
Towards Composing Software Components in Both
Design and Deployment Phases

Kung-Kiu Lau, Ling Ling, and Perla Velasco Elizondo

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu,lling,pvelasco}@cs.man.ac.uk

Abstract. In component-based software development, the design of components
should be carried out separately from the deployment of components, in order to
enable composition by independent third-parties. However, current component
models are biased towards either the design phase or the deployment phase. In
this paper, we argue that ideally component models should include both design
and deployment phases, and it should be possible to compose components in
both phases. We also demonstrate a preliminary implementation of composition
in both phases in a component model we have defined.

1 Introduction

In component-based software development (CBD), components should be produced
and used by independent parties. That is, component developers need not be the same
people as component customers such as system developers. This implies that the design
of components is carried out separately from the deployment of components.

In current component models [6,10], components are either objects or architecture
units. These models tend to be heavily biased towards either the design phase or the
deployment phase. In architecture-based models[6,10] like ADLs and UML2.0, com-
ponents are design entities by definition, with or without corresponding binary compo-
nents in the deployment phase. On the other hand, in object-based models[6,10] like
COM, .NET, CCM and Fractal, components are objects that are executable binaries,
and are therefore more deployment phase entities than design phase entities.

In this paper, we argue that ideally component models should include both design
and deployment phases, in order that CBD can meet its objective of building systems
from pre-existing components with maximum reuse and minimum time-to-market. In
particular, it should be possible to compose components in both design and deployment
phases, in an idealised life cycle for components.

We motivate and define the idealised life cycle, based on commonly accepted desider-
ata for CBD. We discuss composition in each phase, and demonstrate a preliminary
implementation of composition in both phases in a component model we have defined.

2 An Idealised Component Life Cycle

The life cycle of components [4] consists of three stages: (i) the design phase, when
components are designed, defined and constructed in source code, and possibly

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 274–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Composing Software Components in Both Design and Deployment Phases 275

compiled into binaries; (ii) the deployment phase, when binaries of components are
deployed into the execution environment; and (iii) the run-time phase, when compo-
nent binaries are instantiated and executed in the running system. Ideally, composition
should be possible in both the design and the deployment phase while the system is
being constructed. Composition means component reuse, and therefore composition
in both phases will maximise it. It also means design flexibility in the sense that the
deployed components, in particular composite components, can be designed, by com-
position in either phase.

deployment phase
component (binary) component

instance
component
design phase

(a) Design (b) Deployment (c) Run−time

RTERepositoryBuilder Assembler

composition operator composition operator

A

B

C

D

BC

B

A
InsA

InsB

InsD

InsBC

A

B

D

BC

C

Fig. 1. An idealised component life cycle

Accordingly, we have defined an idealised component life cycle [11,10], and the
kind of composition meaningful in its phases (Fig. 1). The idealised life is based on
the following commonly accepted desiderata of CBD [2,5,14,12].Firstly, components
should be pre-existing reusable software units, which developers can reuse for differ-
ent applications. This necessitates the use of a repository in the design phase. Secondly,
components should be produced and used by independent parties, i.e. component devel-
opers and system developers. This is important for ensuring that components are truly
reusable by third parties and requires the use of proper tools that can interact with a
repository, in the design and deployment phases. Thirdly, it should be possible to copy
and instantiate components, so that their reuse can be maximised, both in terms of code
reuse and in terms of components’ scope of deployment. Thus, components should be
distinguished from their instances, and therefore differentiate the design and deploy-
ment phases from the run-time phase. Fourthly, components should be composable into
composite components which in turn can be composed with (composite) components
into larger composites (or subsystems), and so on. This requires that composites can be
deposited in and retrieved from a repository.

Design Phase. In the design phase, components have to be constructed, catalogued and
stored in a repository in such a way that they can be retrieved later, as and when needed.
Components in the repository are in source code, or they may have been compiled into
binary.

276 K.-K. Lau, L. Ling, and P.V. Elizondo

Components here should be composed into well-defined composites using suitable
composition operators, ideally supported by a composition theory. It should be also
possible to store composites in, and retrieve them from the repository, and use them for
further composition, like any components.

A builder tool can be used to (i) construct new components, and then deposit them in
the repository, e.g. A in Fig. 1 (a); (ii) retrieve components from the repository, compose
them and deposit them back in the repository, e.g. in Fig. 1 (a), B and C are composed
into a composite BC that is deposited in the repository.

To promote its reuse, components in design phase should be templates that provide
services. They should be normally identified and designed by domain experts as basic
building blocks for the domain in question. They should be generic, rather than system-
specific so that they should be (re)used to build many different applications. Similarly,
composition operators in design phase should be generic composition schemes to coor-
dinate components which can be customised for many different systems.

To support its reuse, a composite should expose a proper interface. This interface
should be generated during the composition process and its content should be deter-
mined according to the semantics of the composition operator involved.

Components in design phase should also include information of the environmental
dependencies or resources needed for its deployment. Composition in design phase
should generate such information for composites. For instance, deployment contracts
[8] could be used to specify this kind of information.

Deployment Phase. Ideally, composition in deployment phase should follow on from,
and thus exploit composition in design phase. That is, as far as possible, the composites
here should be built directly from the (composite) components created in design phase.

In the deployment phase, components have to be retrieved from the repository, and if
necessary compiled to binary code and then composed. The result of deployment phase
composition is a whole system in binary code, and so this is the end result of system
design and implementation. The completed system should be then ready for execution.

As in design phase, composition should be carried out via composition operators.
However, here they should be able to specify detailed coordination between components
as required by the specific application.

An assembler tool can be used to retrieve components from a repository, compile
them into binary code, and then assemble them into a system. For example, in Fig. 1
(b), binaries of A, B, D and BC are retrieved and composed into a system.

Composite components in the deployment phase should have interfaces that allow
them to be instantiated and executed at run-time. These interfaces should be generated
during the composition process.

Composition in deployment phase should be supported by suitable deployment tools,
for example, for checking component compatibility with one another and with the ex-
ecution environment, a tool for checking deployment contracts would be useful. Also
with such tools, it should be possible to deploy a composite in many different systems,
possibly with different execution environments.

Run-time Phase. In the run-time phase the constructed system is instantiated and
executed in the run-time environment, e.g. A, B, D and BC in Fig. 1 (c). Although there

Towards Composing Software Components in Both Design and Deployment Phases 277

is no further composition in this phase, it may be desirable to adapt component instances
or composition operators so as to dynamically re-configure the executable system. We
do not discuss this here, since our focus is on composition.

3 Towards Composition in Both Design and Deployment Phases

We have done some preliminary work to realise composition in both design and deploy-
ment phases. Our work is based on a component model we have defined [7].

In our component model, there are two basic entities: (i) computation units and
(ii) connectors.1 A computation unit performs only computation (by providing a set
of methods) and does not invoke any computation outside itself. There are two kinds of
connectors: (i) invocation connector, which is used to invoke a computation unit; and
(ii) composition connector, which composes components.

Component
Atomic

Composite
Component

Inv

Repository(a) Design Phase Composition (b) Deployment Phase Composition

System

ABDC

Invocation Connector

Computation Unit

Design Phase Composition Connector

Deployment Phase Composition Connector

Retrieve from Repository

Store into Repository

Inv

B

Inv

AB

Inv Inv

AB

Inv Inv

AB

Inv Inv

D

Inv

D

Inv

C

Inv

AB

Inv Inv

D

Inv

ABD

Inv

AB

Inv Inv

ABD

ABD

D

Inv

C

Inv

A

DsC

A B

DsC

A B

DsC

A B

DsC

DsC

A B

DsC

A

DsC

A B

DsC

DsC

DpC

DpC

Fig. 2. (a) Design phase and (b) deployment phase composition in our component model

Components are defined in terms of computation units and connectors. There are
two kinds of components: (i) an atomic component, which consists of a computation
unit with an invocation connector (e.g. A in Fig. 2 (a)); and (ii) a composite component,
which consists of a set of components (atomic or composite) composed by a composi-
tion connector (e.g. AB and ABD in Fig. 2 (a)).

In [9], we have introduced a basic set of composition connectors which encapsulate
the three standard control structures: sequencing, branching and looping.

Composition connectors are defined by a type hierarchy, so that they allow hierarchi-
cal component composition. Every (composite) component has one top-level connec-
tor, which is either an invocation connector (for an atomic component) or a composition

1 They are exogenous connectors [9].

278 K.-K. Lau, L. Ling, and P.V. Elizondo

connector (for a composite component). This connector represents the only access point
to the component, and also its interface for further composition.

The semantics of components and composition operators in our component model is
such that composition can take place in both the design and deployment phase. Fig. 2
illustrates this, in a direct comparison to the idealised life cycle.

In the design phase (Fig. 2 (a)), the composite AB is built from atomics A and B by the
design phase composition connector, and in turn it can be further composed with atomic
D by having its top-level connector connected by another composition connector, to
build up the composite ABD which is deposited back into the repository.

In the deployment phase (Fig. 2 (b)), the composite ABD is retrieved form the repos-
itory and composed via a deployment phase composition connector with component D
to yield system ABDC. If required, further composition can be done. At the end of the
composition process, the final system should be ready to execute in the target execution
environment.

3.1 Preliminary Implementation

In our preliminary work, we have implemented composition connectors in both design
and deployment phases, but not full-blown tools for the builder, repository or assembler.
Neither have we incorporated deployment contracts in the design phase, or implemented
deployment tools for deployment phase. Our implementation is in Java, and we have
also assumed a simple execution environment throughout, namely JVM.

Design Phase. A software component is implemented in source code by a set of classes
(Fig. 3) in design phase. We define a type Component in a Java interface. For each com-
ponent, there is a class that implements the Component interface, and it keeps a refer-
ence to a Connector type as the top connector. The super class Connector is extended
by The Invocation connector class and composition connector classes such as Pipe,
Sequencer which are used to construct atomic or composite components respectively.

Component implementation
Invocation

+ compose() {... }
+ execute(...){...}

Connector
Component

<< interface >>
1

1 Sequencer

+ compose() {... }
+ execute(...){...}

. . .

Connector top_connector

Pipe

+ compose() {... }
+ execute(...){...}

Fig. 3. Overall structure of a set of classes for constructing components

A builder tool in design phase is used to construct components. For an atomic com-
ponent, the computation unit is a Java class that implements the services and does not
call services outside itself. The builder tool specifies the computation unit name in the
source code of Invocation connector (compose method), and generates an atomic
component class which refers to the Invocation. For a composite component, it is
constructed by builder tool by specifying the top level connectors of the constituent
components in the source code of the composition connector. Because according to the

Towards Composing Software Components in Both Design and Deployment Phases 279

hierarchical composition, the connection point for the sub component is always its top
level connector. The generated composite component class file refers to the top com-
position connector, which again serves as the connection point when this composite
component is connected by a higher level connector, so as to create a bigger composite
component.

Component interface specifies all the services provided by the component and de-
sired data for instantiation. An atomic component interface is given by the component
developer and presented in an XML format. The interface of a composite is generated
by the composition connector automatically in terms of the interfaces of the constituents
and the composition scheme.

The way to invoke a component is calling the top level connector (execute method)
with the method name and parameters. Internally it calls the lower level connector re-
cursively until it reaches a computation unit. One point worth noting is the components
in this phase are templates, therefore their behaviour is not fixed with specific set of
calling methods at this stage.

Currently, the component repository is a java file directory. In the next step, repos-
itory needs to be fully interacted with the builder tool and both of them need to be
enhanced to support (atomic or composite) component deposit after construction au-
tomatically and multiple copies of component retrieval. Besides, deployment contracts
specification needs to be integrated when the builder tool automates the construction of
components.

Deployment phase. For deployment composition we have a set of classes which in-
tegrate our composition framework (Fig.4 (a)). Deployment phase connectors are im-
plemented as a set of classes with the superclass DPConnector. Each subclass defines
a constructor to instantiate it, and overrides the execute method to implement its cor-
responding logic. A class System defines a valid composition in this phase. According
to our model, the class System holds a reference to deployment phase connector, which
represents the interface and the only access point to it.

Sytstem

− Sequencer sq;

+ SubsystemA()
+ Object execute (...)

Sytstem

SystemA

Sequencer

Pipe (...)

 Pipe

Selector (...)

(a)

...

(b)

Components
(.class)

Design
System

DPConnector
...

Object executeSubsystem(...)
Object execute(...)

1

Sequencer(...)

 Selector

Composition
Framework

Composition Framework

Composition

Fig. 4. (a) Our deployment phase composition framework and (b) its use to compose a System

To build a system, during the composition process we (re)use the binaries of the
components generated in the design phase, our composition framework, as well as the
design of the composition for the desired system (Fig.4 (b)). The result of the composi-
tion process is new class that extends System and declares a constructor containing the

280 K.-K. Lau, L. Ling, and P.V. Elizondo

code for setting up the composition, and a execute for calling its top-level connector’s
to allow the system’s execution, e.g. sq.execute(...) when a Sequencer connector
sq is the top level connector of the SystemA shown in Fig.4 (b).

Making a system a new class allows to generate a binary that can be packaged as
a named, versioned, shippable and deployable unit. The final system is meant to be
deployed within a execution environment and eventually be executed on it.

In the current implementation, systems’ interfaces are generated as a XML file con-
taining very basic information such as the mechanisms to instantiate and execute it, but
it can be extended to include more detailed information for its proper deployment.

A system instantiated via its constructor and executed by calling its executemethod.
The executemethod contains a call to executeSubsystemmethod defined in the DP-
Connector superclass for each one of the components and/or subsystems it connects. In
the executeSubsystem, the hierarchical execution of each connected element is car-
ried out until reach the Invocation connectors of atomic components, where reflection
techniques are used to dynamically execute the required operation in their computation
units.

An Example. Consider a Drink Vending Machine System which serves different kinds
of drinks, i.e. coffee, juice and tea. Besides the traditional paying mechanism, it accepts
coinless dispensing of drinks to holders of drink cards. The architecture for this system
is shown in Fig.5 and it includes the atomic components: ProductManager and Receipe-
Manager –which deal with the drinks’ prices and recipes; CoinBox, CardReader –which
deal with paying for the drinks; and a set of Dispensers –which deal with the pouring
of ingredients during the drink making.2

SEL1

SQ3

P1

SQ4

P2

SL2

Coin
Box

Card
Reader

Product
Manager

Sugar
Dispenser

Tea
Dispenser

Water
Dispenser

SQ1 SQ2

Dispenser
OrangeJuice

Dispenser
Recipe

Manager

Sugar
Dispenser

Coffee
Dispenser

Water
Dispenser

Sugar

PaymentReceiver

Cashier

TeaMixer

DrinkMaker

Mixer
JuiceCoffeeMixer Orange

Mixer

Drink Vending Machine System

Fig. 5. Drink Vending Machine architecture

In the design phase, we build the composite Mixer by hierarchically composing the
dispenser components as depicted in Fig.5. The composite Mixer can deal with the mak-
ing of different drinks according to the top-level Selector condition’s provided value,
e.g. product name = “coffee”. Due to the Mixer encapsulates functionality suitable for
similar applications in the same domain, constructing it in the design phase and putting
it in the repository facilitates its further reuse.

2 Each one of these components is created at design phase by connecting a Invocation connector
to the Java class representing the corresponding computation unit.

Towards Composing Software Components in Both Design and Deployment Phases 281

The Mixer can be compiled into a .class file, and reused at deployment-phase to
create the final system by firstly composing it with the RecipeManager, and then with
the Cashier subsystem –which has been composed from the CoinBox, CardReader and
ProductManager atomic components.

The interface of the final system exposes the way it can be instantiated and executed.
For buying a drink the product name, type of payment, amount or card number are
required.

4 Discussion and Conclusion

The advantages of composition in both phases composition are not present in current
component models. In most of these models, composition is carried out in the design
phase only (e.g. architecture description languages (ADLs), UML 2.0, PECOS, Pin,
Fractal, EJB, COM, CCM, Koala, SOFA and KobrA), leaving the deployment phase
with the only task of implementing what is defined in design phase [10]. In JavaBeans
and POJO [13], composition is carried out in the deployment phase only.

Our approach also allows design flexibility. Developers can choose either to build
up composite components in design phase for reuse purpose, or assemble components
with application specific configuration in the deployment phase. However, there is a bal-
ance between design and deployment phase composition. The former is carried out by
the component builder guided by domain knowledge for constructing reusable building
blocks; the latter is carried out by the system developer targeting particular applications
with environmental settings.

As future work, we intend to implement builder, repository and assembler tools to
automate the composition in both phases, as well as deployment tools. In addition, we
will investigate reference semantics where a constituent component is used by different
composite components, and the issue of further composition and deployment of the
component in such a scenario. We will also consider adaptation and re-configuration at
run-time, as in approaches such as Hadas [1] and Gravity [3].

References

1. Ben-Shaul, I., Holder, O., Lavva, B.: Dynamic adaptation and deployment of distributed
components in hadas. IEEE Trans. Softw. Eng. 27(9), 769–787 (2001)

2. Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F., Pomberger, G., Pree, W., Stal,
M., Szyperski, C.: What characterizes a (software) component? Software - Concepts and
Tools 19(1), 49–56 (1998)

3. Cervantes, H., Hall, R.S.: Autonomous adaptation to dynamic availability using a service-
oriented component model. In: Proc. ICSE04, pp. 614–623. IEEE Computer Society Press,
Los Alamitos (2004)

4. Christiansson, B., Jakobsson, L., Crnkovic, I.: CBD process. In: Crnkovic, I., Larsson, M.
(eds.) Building Reliable Component-Based Software Systems, pp. 89–113. Artech House
(2002)

5. Heineman, G.T., Councill, W.T.: Component-based software engineering: putting the pieces
together. Addison-Wesley, Reading (2001)

282 K.-K. Lau, L. Ling, and P.V. Elizondo

6. Lau, K.-K.: Software component models. In: Proc. ICSE ’06, pp. 1081–1082. ACM Press,
New York (2006)

7. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its preliminary formal-
isation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 1–21. Springer, Heidelberg (2006)

8. Lau, K.-K., Ukis, V.: Defining and checking deployment contracts for software components.
In: Gorton, I., Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A.,
Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 1–16. Springer, Heidelberg (2006)

9. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software components.
In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau,
K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 90–106. Springer, Heidelberg (2005)

10. Lau, K.-K., Wang, Z.: A survey of software component models. 2nd edn., Pre-print
CSPP-38, School of Computer Science, The University of Manchester (May 2006)
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

11. Lau, K.-K., Wang, Z.: A taxonomy of software component models. In: Crnkovic, I., Larsson,
M. (eds.) Proc. of 31st Euromicro Conference, pp. 88–95. IEEE Computer Society Press,
Los Alamitos (2005)

12. Meyer, B.: The grand challenge of trusted components. In: Proc. ICSE03, pp. 660–667. IEEE
Computer Society Press, Los Alamitos (2003)

13. Richardson, C.: POJOs in Action: Developing Enterprise Applications with Lightweight
Frameworks. Manning Publications Co., Greenwich, CT (2006)

14. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley, Reading (2002)

http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

	Introduction
	An Idealised Component Life Cycle
	Towards Composition in Both Design and Deployment Phases
	Preliminary Implementation

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

