
Toward an Approach to Programming Education to Produce Qualified
Software Developers

Jaime F. Castillo, Carlos Montes de Oca, Efraı́n Salomón Flores and Perla Velasco Elizondo
Centre for Mathematical Research, CIMAT. Guanajuato, Guanajuato, 36240, México.

castillo,moca,esalomon,pvelasco@cimat.mx

Abstract

There is a common complaint that undergraduate
programs in computing in many developing countries
have not been preparing students sufficiently to be-
come truly effective in the software industry. Although
some programs in computing are justified in paying
little attention to programming, it is important to
teach it properly to those wishing to develop software
professionally. In order to produce qualified software
developers, the focus should be not only on deter-
mining which programming-related subjects have to
be taught, but also on training academicians to teach
these subjects efficiently. In this paper we introduce an
approach which tackles the former aspects.

1. Introduction

The Software Industry has been recognised as one
of the key opportunity areas to achieve modernisation
and development in many countries [2], [8]. Multiple
experiences demonstrate that one critical factor to
achieve these benefits is people. In India, Israel and
Ireland –which are in the top tier countries for software
exports, the skills, expertise and size of their local
labour pools have been factors in determining their
current state in the Software Industry [2], [11].

In many developing countries, however, software
companies are still struggling to grow in part due to
the lack of a large pool of competent and talented
software developers. Their experiences show that most
of the graduates do not have the essential knowledge
and skills to join the Software Industry and achieve the
level of productivity expected [7], [10], [4], [3].

Although some Undergraduate Programs in Com-
puting (UPC) are justified in paying little attention
to programming, it is important to teach it properly
to those interested in a career in software developer.
However, we also consider that for producing qualified
software developers, the focus should be not only on

determining which programming-related subjects have
to be taught, but also on training academicians to teach
these subjects efficiently, and on promoting this man-
ner of education in other institutions. Considering all
the former, in this paper we introduce an educational
approach which we believe tackles the former aspects
efficiently.

This paper is organised as follows. In Section 2, we
introduce the proposed approach and describe its main
elements. Section 3, we discuss and evaluate it against
related work. In Section 4, we describe the current state
of practice of approach and describe our future plans.
Finally in Section 5, we present the conclusions.

2. The Proposed Approach

The approach presented in this paper tackles two
main aspects: (i) it considers the technical and peda-
gogic issues around teaching programming to prospec-
tive software developers via a Pillars Model and (ii)
it defines the mechanisms to improve and to promote
this manner of programming education across UPC in
other institutions via an Implementation Framework.
In the following sections, we describe both the Pillars
Model and the Implementation Framework.

2.1. The Pillars Model

When preparing software developers at early stages
of UPC, the transfer of theoretical issues is not all
that is needed. Pedagogy (and didacticism) is also
very important because it stresses the process through
which knowledge is constructed. Our approach con-
siders these issues in a Pillars Model whose pillars
define a hierarchy of topics resulting from analysing
(a) several relevant works on teaching programming,
(b) the teaching experience of the involved parts in
this project and (c) the current needs of software com-
panies. Fig. 1 shows the pillars and their hierarchies’
top-level content, which is briefly discussed next.

22nd Conference on Software Engineering Education and Training

978-0-7695-3539-5/09 $25.00 © 2009 IEEE

DOI 10.1109/CSEET.2009.21

101

Problem Solving Techniques

Functions, Relations and Sets
Algorithms and Data Structures

Formal Methods
Basic Logic
Basic of Counting
Graphs and Trees
Modelling and Simulation
Numerical Analysis
Abstract Machines
Operations Research

Declarative Computation Model

Message−Passing Concurrent Model
Declarative Model with Explicit State
Object−Oriented Model
Shared−State Concurrent Model
Relational Computation Model

Database Programming
Artificial Intelligence Techniques

Data−driven Concurrent Model

Distributed Model
Constraint−based Computation Model
GUI Programming

P
ed

ag
og

ic
al

Software Engineering

Process of Software Development
Requirements Specification Techniques
Design Techniques
Development Techniques
Testing Techniques
Conventions and Programming Standards
Debugging Techniques

Educational Programming Languages
Commercial Programming Languages

Telecommunications

Technology Hardware & Software
Learning Environments

Quality Assurance

Didactic−Pedagogic

Behaviorism Teaching Techniques
Constructivism Teaching Techniques

Traditional Teaching Techniques

Autodidacticism
Synthesis Techniques
Tutorials
Pen & Paper Programming

Hardware Control Development
Games and Animation Development
Interactive Programming

T
he

or
et

ic
al

Programming

Foundations

T
he

or
et

ic
al

Figure 1: The Pillars Model

2.1.1. Foundations Pillar. The teaching of formal
aspects to prospective software engineers is basic
in developing their skills in modelling and problem
solving. Constructing a non-real artefact, as software
is, requires abstract reasoning and mathematical mod-
elling. However, it seems that the lesser use of formal
techniques to software development has contributed to
the lack of these skills in current UPC graduates. Our
Foundations Pillar considers a set of formal subjects
which we consider basic to developing these abilities
so that the teaching of programming can be oriented to
model computation models1 via different formalism.

2.1.2. Programming. Current experiences demon-
strate that for students who have a weak background in
programming it is harder to make a successful career as
a software developer because advancing their abilities
takes longer. The study of programming languages as
a means of teaching programming gives little insight
into programming as a theoretical process. Instead,
our Programming Pillar includes a set of computation
models by which students can focus on understanding
various ways for implementing computation rather than
on the particular syntax of a programming language.

2.1.3. Software Engineering Pillar. It has been said
that “programming without Software Engineering (SE)
is like sculpting with a saw”. Despite that, in many
UPC SE is offered as either an optional or a late course.
Introducing SE topics at early stages of UPC allows

1. In [9] a computation model is defined as a formal system that
states how computations are done.

students to not only understand the necessity of con-
structing software using a disciplined and systematic
way, but also to initiate their adherence to SE practices.
Our Software Engineering Pillar includes the set of
topics we consider relevant in this context.

2.1.4. Technology Pillar. We are convinced that the
“technology revolution” demands that institutions in-
clude the technology in their teaching activities. How-
ever, we consider that the first priority must be teaching
and learning and the technology should only be re-
garded as a tool of efficiency to teach and learn better.
By analysing various works, we have identified several
technology guidelines that should be considered for the
teaching of the topics in the Foundations, Program-
ming and Software Engineering Pillars.

2.1.5. Didactic-Pedagogic Pillar. The use of adequate
tools to support the teaching process is not all that is
needed to develop an efficient teaching environment.
The role of the teacher and his skills are also important.
We agree with the adage “a teacher teaches the way
he was taught”. Thus, in our model the Didactic-
Pedagogic Pillar provides the guidance to help teach-
ers improve their teaching skills so that all the issues
considered in the model can be efficiently taught.

2.2. The Implementation Framework

The Implementation Framework defines the process
to prepare teachers to teach according to the Pillars
Model and to promote what is taught to other institu-
tions via a public body designated the Board. Besides

102

the Board, there are other roles in our framework: the
Instructor, the Faculty and the Students, see Fig. 2.
For clarity, we will explain the process’ flow assuming
there is no Board.

First in our process we prepare the course (Prepare

Course) –according to the Pillars Model, and select
the faculty members to be trained (Select Faculty); both
activities are carried out by the Instructor. An assess-
ment of the candidate faculty members is required
to achieve the success of the course as not all of
them may have the required level with regard to the
approach to implement. Then, with a group of faculty
members assigned, the teaching-learning activities can
be carried out (Teach Course and Take Course). After
that, the members of the Faculty are evaluated by
the Instructor (Evaluate Faculty), then faculty members
can start teaching to the Students at their respective
institutions according to the received training.

As can be seen in Fig. 2, the Evaluate Faculty activity
leads to the creation of the Board (Create Board), which
is a body of experts in teaching programming that
works as a medium to spread the acquired knowledge.
The faculty members with the best grades in the eval-
uation activity are the potential candidates to comprise
the Board. The monitoring of the activities made by
the Board (Monitoring Board), as well as the ones made
by the Faculty at their respective universities (Monitoring

Faculty), are carried out by the Instructor to ensure that
they comply with their requirements and generate the
expected results. When a Board exists, activities such
as Select Faculty, Teach Course and Evaluate Faculty are
then carried out by the Board instead of the Instructor
(see the decision point in Fig. 2).

Faculty
Prepare
Course

Teach
Course

Evaluate
Faculty

Take
Course

Create
Board

Monitoring
Board

Monitoring
Faculty

Teach
Course

Evaluate
Students

Board

Select

Instructor Faculty Students

Select
Faculty

Teach
Course

Evaluate
Faculty

Take
Course

Organise
Symposiums

Update
Course

Organise
Meetings

[no existing board]

[existing board]

Figure 2: The Implementation Framework

Finally, the Organise Meetings and Symposiums activ-
ities in our framework work as the sources to direct
all decision making management (Update Course) with

regard to the establishment of a solid community of
programming educators.

Now we have explained our approach, in the follow-
ing section, we compare it to related work.

3. Related Work

Many approaches and tools to improve the teaching
of programming have been proposed. For example, an-
imation/simulation/visualisation educational languages
have often been utilised to help students to better
understand programming constructs. The idea behind
these languages is mapping abstract ideas to graphical
representations, which can be better understood by
students.2 However, it is not always clear how these
languages should be taught efficiently.

A wider context in the teaching of programming
has been considered by [12] and [5]. The former
work develops a cognitive approach for learning pro-
gramming based on learning patterns. The later work
introduces a repository for creating and delivering
learning objects for a programming course. In our
view, these approaches are hardly oriented to the
pedagogical aspects of teaching as no consideration is
given to the topics that have to be taught to deal with
the goal of producing qualified software developers.

A group of lecturers at the Otago Polytechnic devel-
oped a sequence of introductory programming courses
meant to provide students with good core programming
skills and competence in both the Procedural and
Object-Oriented paradigms [6]. In contrast to previous
works, this work seems to be strongly oriented to
the teaching of programming, and some pedagogical
principles are utilised to select the topics to be taught.
However, it does not consider current demands of
software development companies nor the issue of how
these courses can be spread to other institutions.

Thus, we consider our approach unique because it
considers the technical, pedagogic and organisational
of around producing qualified software developers. It
considers a set of justified programming-related topics
to be taught to prospective software developers at early
stages. That is, the what to teach? and the why to teach
it? Secondly, it also considers the form in which the
topics have to be taught efficiently. That is, the how to
teach it? Finally, it also considers a scheme to improve
this way of teaching and to promote it across other
institutions. That is, the how to improve it? and the
how to spread it? As far as we know, there is no work
that considers all these aspects.

2. An example of such languages is JAWAA [1].

103

Although our work lacks of full evidence of its
effectiveness due to it is still ongoing research, we
considered we have the conditions to obtain such
evidence in the coming months, as we discuss next.

4. Current State and Future Actions
The implementation of any educational approach

is unlikely to happen without an outside stimulus.
Fortunately, we are actively involved in an IT Industry
Development Program in our country, which has as
one of its main efforts the improvement of UPC to
better prepare professionals for the Software Industry.
We are now working with seven academic institutions
of one state in our country. All of them are interested
in preparing software developers as there is a potential
market in which their graduates can be employed.

We have already designed a set of programming
courses according to the Pillars Model, as well as
trained the faculty members of the participant insti-
tutions according to the Implementation Framework.
The grades and feedback obtained from this exercise
are positive. However, these data is only part of the
exercise to evaluate our approach in full. In the follow-
ing months, we will select one person from the set of
faculty members trained. We will monitor and evaluate
the teaching process of this person at his academic
institution. Once the teaching process is completed, a
software company will test the trained students. In this
test they will evaluate the skills they consider most im-
portant for “entry-level” software developers. We have
already selected a company for such purposes. The
selected company has a large data record of “entry-
level” examinations given to prospective employees in
the last five years, which will give us useful evaluation
data.

5. Conclusions
Although some UPC are justified in paying little

attention to programming, it is important for UPC
to provide the required foundations to those wishing
to develop software professionally. In this paper we
propose an approach to improve the teaching of pro-
gramming at early stages in UPC. The approach has
two main elements: (i) a Pillars Model –which defines
the core issues within the teaching of programming
and (ii) an Implementation Framework –which defines
how the core issues are transmitted to faculty members
and promoted to other institutions. As far as the work
known so far, there is no approach considering the
two elements. Although our work is still in progress,
we have the conditions to objectively evaluate it in
the short term and further build our understanding of
programming education.

Acknowledgment

This work was supported by CONCyTEG under
grant 08-02-K662-119.

References

[1] A. Akingbade, T. Finley, D. Jackson, P. Patel, and S.H.
Rodger. JAWAA: Easy web-based animation from CS
0 to advanced CS courses. In Proc. of the 34th SIGCSE
Technical Symposium on Computer Science Education,
pages 162-166, 2003. ACM.

[2] D. Breznitz. Innovation-based industrial policy in
emerging economies? the case of Israel’s IT industry.
The Journal of Systems and Software, 8(3):1–38, 2006.

[3] J.J. Cappel. Entry-level IS job skills: A survey of
employers. Journal of Computer Information Systems,
42(2):76–82, 2002.

[4] X. Fang, S. XiangKoh, and S. Lee. Transition of knowl-
edge/skills requirement for entry-level is professionals:
An exploratory study based on recruiters’ perception.
Journal of Computer Information Systems, 46(1):58–
70, October 2005.

[5] A. Gunawardena and V. Adamchik. A customized
learning objects approach to teaching programming.
SIGCSE Bulletin, 35(3):264–264, 2003.

[6] P. Haden and Dr S. Mann. The trouble with teaching
programming. In Proc. of the 16th Annual Confer-
ence of the National Advisory Committee on Comput-
ing Qualifications (NACCQ), pages 63–70, Palmerston
North, New Zealand., 2003.

[7] M.E. McMurtrey, J.P. Downey, S.M. Zeltmann, and
W.H. Friedman. Critical skill sets of entry-level it
professionals: An empirical examination of perceptions
from field personnel. Journal of Information Technol-
ogy Education, 7(2008):102–120.

[8] B. Meyer. The unspoken revolution in software engi-
neering. IEEE Computer, 39(1):124–123, 2006.

[9] P. Van Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT Press,
Cambridge, MA, USA, 2004.

[10] M. Shaheen and Z.U. Rehman. Critical skills for
computer academicians course proposal. In Proc. of
the Informing Science and IT Education Conference
(InSITE), pages 405–421, 2008.

[11] M. Teubal. The Indian software industry from an Is-
raeli perspective: A microeconomic and policy analysis.
Science Technology & Society, 7(1):151–186, 2002.

[12] D. Traynor and J.P. Gibson. Towards the development
of a cognitive model of programming. A software
engineering proposal. In Proc. of the 14th Workshop of
Psychology of Programming Interest Group, 2004.

104

