Composite Connectors for Composing Software
Components

Kung-Kiu Lau, Ling Ling, Vladyslav Ukis and Perla Velasco Elizondo

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, 1lling, ukisv,pvelasco}@cs.man.ac.uk

Abstract. In a component-based system, connectors are used to compose com-
ponents. Connectors should have a semantics that makes them simple to construct
and use. At the same time, their semantics should be rich enough to endow them
with desirable properties such as genericity, compositionality and reusability. For
connector construction, compositionality would be particularly useful, since it
would facilitate systematic construction. In this paper we describe a hierarchical
approach to connector definition and construction that allows connectors to be
defined and constructed from sub-connectors. These composite connectors are
indeed generic, compositional and reusable. They behave like design patterns,
and provide powerful composition connectors.

1 Introduction

A component-based system can be described as a software architecture [14] with com-
ponents (boxes) and connectors (lines). Components represent parts of the system,
while connectors represent interactions between components. Connectors are therefore
composition operators for the components.

Clearly, in a component model, the ease of building systems and reasoning about the
process depends directly on the varieties of connectors available and their semantics. A
crucial question therefore is how to define and construct suitable connectors.

Connectors should have a semantics that makes them simple to construct and use.
At the same time, their semantics should be rich enough to endow them with desirable
properties such as genericity, compositionality and reusability. For connector construc-
tion, compositionality would be particularly useful, since it would allow connectors to
be constructed a systematic manner.

In this paper we describe a hierarchical approach to connector definition and con-
struction. Using a set of basic exogenous composition connectors, we can define and
construct a composite connector as a composition of the basic connectors. The resulting
composite connectors are indeed generic, compositional and reusable.

Because our basic connectors define control structures, our composite connectors
represent composite control structures, or composite control flow patterns. As such, they
behave like certain design patterns [6], and provide powerful composition operators that
can be used to perform complicated compositions involving many components all in a
single step.

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, pp. 266-280] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Composite Connectors for Composing Software Components 267

The paper is organised as follows. In Section[2| we describe related work on the issue
of composite connectors. In Section [3| we briefly describe the concept of exogenous
composition connectors and present a basic set of these connectors. In Section [we
explain composite connectors in detail and how they are implemented. In Section[3l we
show how they can be used in practice. Finally, in Section [6]l we discuss our approach
for creating composite connectors.

2 Related Work

As far as we know, our approach to composite connectors is new and unique. There are
two main related areas: software architectures |14l and coordination languages [13]].

In software architectures, there is work on compositional approaches to connector
construction, but it does not construct connectors from sub-connectors. Rather it tries
to construct only a single connector. This construction consists in a composition of
elements with the desired properties, yielding a new connector; or a composition of
the necessary adaptations or transformations of an existing connector to achieve these
properties. In [15)], an ADL (Architecture Description Language [L1]) connector can
be adpated by composing a set of transformations. The transformations can modify the
connector’s properties, e.g. protocol, data policy. Typically they also change the code
of the components involved since connector code is embedded in component code.

In [4l5] a connector is composed from a set of connector elements. The elements
model certain non-functional properties of some basic connector types supported in mid-
dleware technologies. In [10], an existing connector’s aspects, e.g. security, monitoring,
etc., can be specified separately and then composed and integrated with the connector.

These approaches only deal with the construction of a single connector. Furthermore,
in these approaches either connectors are not distinct from components, e.g. [[15], or
when they are, their implementations are customized solutions for a specific system [415].
Therefore in all these approaches, both components and connectors cannot be reused.

In coordination languages, composite connectors can be constructed. In these lan-
guages, connectors are used to coordinate component interactions. Compared to ADL
connectors, these connectors can represent much more sophisticated coordination poli-
cies for sets of components. In the coordination language Reo [2l1] connectors are com-
posed of channels. The channels are compositional, and therefore composite connectors
can be defined.

However, Reo composite connectors are very different in nature from our composite
connectors. In Reo, components only perform I/O operations, and connectors are data
channels. Consequently, a composite connector in Reo is not a control structure, and so
it differs form our composite connector. In particular, a Reo composite connector does
not behave like any design pattern.

3 Exogenous Composition Connectors

Our approach is based on exogenous connectors. In this section we briefly explain what
exogenous connectors are, and how they are used as composition operators for software
components.

268 K.-K. Lau et al.

(a) Atomic (b) Composite
Component Component

U Computation unit.
IC Invocation connector.
C Composition connector

Fig. 1. Atomic and composite components

Exogenous connectors are defined within the context of our component model [§]. In
our component model, there are two kinds of basic entities: (i) exogenous connectors [
and (ii) computation units. Components are constructed from exogenous connectors and
computation units. A computation unit performs only computation (by providing a set
of methods) and does not invoke any computation outside itself. Exogenous connectors
coordinate all the computation performed by components.

There are two kinds of components: atomic and composite. An atomic component
(Fig[(a)), consists of a computation unit (U) and an exogenous connector for invoking
the methods in the computation unit.

This connector is called an invocation connector (IC). A composite component is
composed from (atomic or composite) components by using a composition connector
(C in Fig. [(b), which shows two composite components). This is an exogenous con-
nector that defines a piece of control that coordinates all the calls to the methods in
the sub-components. In a system, the set of all the composition connectors encapsulate
all the control in the system. For example, a Sequencer connector that composes two
atomic components A; and As can call a method my in A, and a method my in As, in
that order. A Pipe connector composing A; and As behaves similarly, but can also pass
the result of m; to Ao and use it in calling mo. Components do not initiate any control,
and just provide services when invoked by the connectors.

Every component thus has a top-level connector: this is either an invocation connec-
tor (for an atomic component) or a composition connector (for a composite component).
This connector acts as an interface for the component, and is also used by other con-
nectors for composition.

In [7]], we have introduced these basic exogenous composition connectors which
encapsulate different control structures that are necessary for building systems. The
control encapsulated in these connectors corresponds to the three standard control struc-
tures: sequencing, branching and looping; therefore this set of connectors is Turing
complete [[1213].

3.1 A Hierarchy of Composition Connectors

Exogenous composition connectors are defined in a hierarchical way (as can be seen in
Fig. [1). For example, a Sequencer connector, or a Pipe connector, that composes two
atomic components A; and A, is clearly defined in terms of the invocation connectors
in A; and A,.

In general, exogenous composition connectors form a hierarchy built on top of in-
vocation connectors for atomic components. The lowest level (level 1) of composition

Composite Connectors for Composing Software Components 269

connectors connect invocation connectors, and the second-level (level 2) composition
connectors are of variable arities and types. In general, composition connectors at any
level can be of variable arities; composition connectors at any level higher than 1 can
be of variable arities and types; and we can define any number of levels of connectors.
Connectors at level n for any n > 1 can be defined in terms of connectors at levels 1
to (n — 1). In particular, the types of the former are defined in terms of the types of
the latter. The connector type hierarchy can be defined in terms of dependent types and
polymorphism as follows (omitting methods and their parameters):

Basic types: Atomic Component, Result;
Connector types:
I = Atomic Component — Result;
L1=1x...x I — Result;
Forl <i<mn, Li=L(ji) X ... X L(jm) — Result, for some m
where ji, € {1,....,(i — 1)} for1 <k <m,

Ll1,i=1

L2,i=2
and L(i) =

In,1=n.

)

where [is the Invocation Connector type, and L is the Level-: Composition Connector
type, for 1 <i < n.

Accordingly we have implemented composition connectors as a hierarchy of classed]
which extend a common superclass called Connector (Fig.[2).

Connector

Object target

Vector operation
Vector parameter
Vector condition

Object execute()
Object executeConnector(Connector ¢, Object m, Object p);

VAN

Sequencer Selector While
+ Sequencer (Vector tget, + Selector (Vector cnd, + While (String cond,
Vector op, Vector par) Vector tget, Vector op, | ™" Vector tget,
+ Object execute() Vector par) Vector op, Vector par)
+ Object execute() + Object execute()

Fig. 2. Hierarchy of composition connector classes with the superclass Connector

At any level of the hierarchy, a connector can be defined in a generic manner as a
class that extends and overrides selected methods of the superclass Connector. We have
implemented a set of five basic composition connectors: Sequencer and Pipe, Selector,

! We have two implementations, one in Java and another in NET C#.

270 K.-K. Lau et al.

and While and Repeat, which correspond to sequencing, branching and looping control
respectively.

Each connector is made up of a signature and code. The signature, implemented
by the connector’s constructor, indicates how the connector can be used. The code
implements the connector’s functionality, and is defined as a method called execute.

As shown in Fig. 2] the constructors of all the connector receive a common set of
parameters, i.e. tget, op and par. For a connector, tget specifies the set of connectors
it is connected to; op is the set of operations to be executed via those connectors; and
par is the set of parameters required to support the executions. The implementations
of the constructors are all similar; the constructors only verify the type and number of
the arguments they receive, and store them into the corresponding superclass fields, i.e.
target, operation and parameter.

The execute method of a composition connector is inherited from the Connector
superclass and overridden by the connector class. The execute methods of all the
connectors are very similar and only differ in the specific code required for the control
scheme they encapsulate, e.g. a Selector connector requires some code for evaluating its
condition. All execute methods call the executeConnector method implemented in
the Connector superclass. This method contains the code for executing any connector
at any level of the hierarchy.

Fig.[Bla) shows an outline of the code for the executeConnector method. This il-
lustrates the hierarchical execution of connectors. First, the subtype of the connector is
identified via specific supporting functions arranged in an “if-then-else” control struc-
ture. Once the connector subtype is identified, it is stored in a variable of this subtype
by casting it. For example, if the connected sub-connector is of type Sequencer, it needs
to be cast to this type, which is a subtype of Connector as shown in Fig. 2l Finally, the
connected connector is executed by calling its corresponding execute method. This
process is repeated for all the connected connectors in a hierarchy until the invocation
connectors are encountered.

iclass Connector { ' iclass Invocation extends Connector {
T b

| | private Object cu;
! Object executeConnector(Object connToExecute,...){ ! e

I

' 1 public Object execute(

! s : : o . . |

! if (:|.sInvoclat:|.oln(connToExeculte)){ i+ Method operationToExecute, Object[] par) {|

! Invocation ic = (Invocation) connToExecute; ! ! r = operationToExecute.invoke(cu, par); 3
r = ic.execute(oper, params); 3 i }return T

else if (isS er (connT te)){ iy

Sequencer seq = (Sequencer) connToExecute; 3 oo

1
! r = seq.execute();
1 else if (...){

} else if (isWhile(connToExecute)) {
While whi = (While) connToExecute;
r = whi.execute();

}

return r; 1

Fig. 3. Outline of the codes for (a) the executeConnector method in the Connector superclass and
(b) the execute method in the Invocation connector class

Composite Connectors for Composing Software Components 271

Invocation connectors are not composition connectors, and so their execute
methods are different. Fig.[3|(b) shows an outline of the code for the execute method of
a invocation connector. This method requires two arguments: operationToExecute
and par, which correspond to the name of the operation to invoke in the computation
unit, and its parameters, respectively. We use the invoke method provided by the class
Method in the java.lang.reflect package to dynamically execute the required operation
in a computation unit (cu).

The hierarchical nature of composition connectors means that every system has one,
and only one, top-level connector, which initiates control flow for the entire system
calling the execute methods of connected connectors following a top-down approach.
To illustrate this, consider the architecture with exogenous composition connectors in
Fig. Bl The architecture corresponds to a Coffee Machine system. For simplicity and
clarity, we have not explicitly distinguished between atomic and composite compo-
nents in the architecture. The Coffee Machine consists of a hierarchical structure of
composition connectors (Sequencers SQ2 and SQ1, Selector SEL and Pipe PIPE) rep-
resenting the system’s control flow, sitting on top of independent components (Card
Manager, Cash Manager, Coffee Maker, Cup Dispenser, Coffee Dispenser, Water Dis-
penser, Milk Dispenser and Sugar Dispenser) that provide the computation performed
by the system. The execution of the system starts with the composition operator at the
highest level, namely the Sequencer SQ2. The customers of the system can pay for a

Level 3
ppfalaliale, minkalele L ey

! ‘m Level 2

1
connectors i T —------- e -
m Level 1
i R
irezmne —— 1

Components {

Fig. 4. An architecture with our basic composition operators

Composition

coffee either by cash or by card. Consider the use case of buying a coffee with cash.
The control flow path for this is shown by the dotted line in Fig. @l The first action is
the execution of the level-3 connector SQ2, which firstly calls the level-1 Selector SEL.
The latter chooses the component Cash Manager, and invokes the required method in
it to process the transaction. Then, SQ2 calls the level-2 Pipe PIPE, which invokes one
of the operations in the component CoffeeMaker to get from a recipe the amount of
each ingredient for the selected product. The amounts are passed through PIPE to SQ1
which uses them as parameters for invoking methods in each one of the dispenser com-
ponents. Finally the control flow goes back across the composition hierarchy until it
reaches SQ2, whereupon the transaction is completed. If any data is generated by the
dispenser, e.g. an error or success code, it is also transmitted back across the hierarchy
with the control flow.

272 K.-K. Lau et al.

4 Composite Composition Connectors

The hierarchical nature of composition connectors means that the connectors them-
selves can be composed into composite composition connectors. In this section, we
explain composite connectors in detail.

4.1 Composite Connectors are Patterns

It should be clear from the previous section that a set of connectors that are inter-
connected can be regarded as a single composite connector CC, which in turn can be
used in hierarchical composition subsequently. It should also be clear that CC is a pat-
tern, since it represents a composite control structure that composes a set of
components.

For example, in the Coffee Machine example (Fig. M), the level-2 Pipe PIPE and
level-1 Sequencer SQ1I can be composed into a composite composition connector, as
shown in Fig.

(a)

Level 3 Level 2

Level2 | B COMP‘I ¢ Level 1

Level I

| { i || Coffee Cup Coffee || ||Water Milk Sugar| |:
! || Coffee Cup Coffee || [(Watter| Milk Sugar| | : Maker Dispr Dispr Dispr Dispr Dispr | |:
|| Maker Dispr Dispr Dispr Dispr Dispr||::

Publisher Subscribers

Fig. 5. Coffee Machine with (a) basic connectors and (b) composite connector Observer

This composite connector is equivalent to the object-oriented Observer design pat-
tern [6]. This is because it defines the publish-subscribe dependency between the Cof-
feeMaker component and the Dispenser components. In Fig.[5(a), when PIPE invokes
the CoffeeMaker, it gets the recipe data and then pipes it to SQ1. SQI then invokes all the
Dispenser components so that they dispense different amounts of ingredients according
to the piped-in recipe datafl Thus the Pipe-Sequencer hierarchy is an Observer com-
posite connector (Fig. Bl(b)). Of course here Observer is used to compose components
rather than objects.

As in its object-oriented counterpart, there are two main roles for components com-
posed by an Observer composite connector: Publisher and Subscriber. When the Pub-
lisher is called, the Subscribers must be notified and must behave accordingly. Like its
object-oriented counterpart, an Observer composite connector defines the one-to-many
dependencies between the Publisher and Subscribers.

In general, a composite composition connector CC' can be composed from a set of
(basic or composite) composition connectors C', . . ., Cy,. C'C can be used to perform a

% In the Observer pattern, the order in which the subscribers are notified is not specified. Here
we have chosen a sequential order.

Composite Connectors for Composing Software Components 273

composite composition involving all the components that are composed by C1, . .., C,,
but all in a single step. Therefore, composite connectors are patterns, and as such, are
much more powerful than their sub-connectors.

Using such connectors can make composition more efficient by reducing the number
of (levels of) composition. For example comparing Fig. [5(a), with only basic connec-
tors, and Fig. Blb), with the Observer composite connector, the level of composition is
reduced by 1 in the latter.

Finally, composing connectors into composite ones is clearly one form of connector
reuse.

4.2 Constructing Composite Connectors

To construct a composite connector CC from a set of inter-connected sub-connectors
C1, ..., C, requires the generation of the correct signature for CC as a single connector.
CC connects different and more connectors (components) than its sub-connectors. In
particular its signature is not the same as those of its top-level sub-connector.

For example in Fig.[3] the top-level sub-connector of Observer is PIPE (Fig.Bla)).
PIPE actually connects two components: CoffeeMaker and Comp1. Comp1 is a compos-
ite component constructed by the lower level connector SQI. By contrast, the Observer
in Fig.[3(b) connects CoffeeMaker and all the Dispenser components.

Therefore, to construct a composite connector correctly, we have to take care of its
signature, by considering the signatures of its sub-connectors, and their composition
structure.

To express the composition structure of a composite constructor, we use the notation
C4[C4, Cs] recursively to denote a composite connector whose top-level connector Cy
is connected to C and Cs at the next level down, and so on. Fig. [6l shows a general
composite connector (denoted by the shaded box).

This connector can be written as C'1{C2, C3[C4, C5, C6]].

Once the composition structure of a composite composition connector has been de-
termined, we can implement the connector by using the implementation of its sub-
connectors. For simplicity, we shall assume that all the sub-connectors in a composite
composition connector are the basic connectors that we described in Section As
before, each connector is made up of a signature and code. We represent this as Con-
nector(Sig, Code). In general, the signature of a composite connector is generated from
the signatures of all the connectors involved in the composition. Specifically, the sig-
nature of a composite connector is the union of the signatures of those connectors,

Level n+2 m
Level n+1 m
wan | (@D (@)D

Fig. 6. A general composite connector

274 K.-K. Lau et al.

including the top-level one, that connect to at least one connector (component) outside
of the boundary of the composition. For example, for the composite connector in Fig.[6]
its signature is generated from the union of the signatures Sig/, Sig2, Sig4, Sig5 and
Sig6 of the connectors C'l, C2, C4, C'5, and C6. Dependencies between these sig-
natures should be analysed and taken care of while constructing the signature of the
composite. In particular, any redundancies resulting from these dependencies should be
identified and removed.

The code of the composite connector is implemented by calling its sub-connectors’
implementation codes. For instance in Fig.[6 the codes Codel ... Code6 of the sub-
connectors C'1 . .. C6 already exist, and are used to generate the code for the composite
connector, by implementing their dependencies (as specified in the composite connec-
tor) as method calls from higher level sub-connectors to the lower level ones. In C'1’s
code Codel, C2 and C'3 are specified in the sub-connector list. When C'1’s execute
method is called, it invokes every connector in the sub-connector list, i.e. the execute
methods of C'2 and C'3. Since C'3 is composed from C4, C'5 and C6, it further invokes
Code4, Code5 and Code6 to implement the functionalities.

In this way, we construct a composite connector from its sub-connectors. We get
a new signature as well as new code for the new connector. The new signature pre-
scribes the usage of the new connector, and typically contains more parameters than
the signatures of the sub-connectors. The new connector’s code is a collaboration of
the sub-connectors’ codes performed according to the composition structure of the new
connector.

Clearly the composition structure of a composite connector of course determines the
nature of the connector. The same set of sub-connectors will result in different compos-
ite connectors when composed differently. This is particularly alarming when you con-
sider that composite connectors are patterns. For example, given a connector C', whereas
the composite Pipe[C,Sequencer] is the Observer pattern, as we have seen, by reversing
the order of the sub-connectors we get a totally different pattern: Pipe[Sequencer, C] is
the AND-join Pipe pattern (which we will describe below).

Another point worth noting is that in theory, it is possible to build arbitrary compos-
ite connectors of unlimited complexity. In practice, some of these connectors may be
useless or too hard to use. So there must be some intent when building any composite
connector. In other words, useful composite connectors must reflect commonly occur-
ring or recurring control flow patterns, such as the set of workflow control-flow patterns
identified in [16].

4.3 Example

Now we show how to construct a commonly occurring workflow control-flow pattern
[L6], namely the AND-Join Pipe pattern, as a composite connector.

AND-Join Pipe. The intent of the AND-Join Pipe composite connector is to allow more
than one predecessors in a binary piping composition scheme. It is an “AND” relation-
ship between these predecessors, i.e. only after all the predecessors have been called that
the results are gathered and delivered to the successor. This pattern of control can be

Composite Connectors for Composing Software Components 275

achieved by composing the Pipe and the Sequencer together. This composite connector
is equivalent to the Generalised AND-Join workflow control-flow pattern [16].

Fig. [7l (a) shows the composition structure of the AND-Join Pipe connector. The
Pipe connects to the Sequencer at the predecessor position. The Sequencer connects
to multiple predecessor connectors (components), i.e. predl, ..., predN; and the suc-
cessor connector (component), i.e. succ, is connected to the Pipe directly. The dotted
line denotes the control-flow path of this connector. It first invokes the Sequencer and
then, and then the Sequencer invokes all the connecting predecessor connectors (com-
ponents) and returns all the resulting data (denoted with circled D). Finally, the Pipe
delivers all the results to the successor connector (component) which it takes for its
execution.

Fig.[7l (b) shows the signatures of the basic connectors Pipe and Sequencer and the
values they could take for the composition depicted in Fig.[7](a). As shown in the figure,
the signatures require the parameters tget, op and par which correspond to the con-
nectors (components) they connect, the operations to execute through these connectors
(on this components), and the required parameters for these executions.

Fig.[7 (c) shows the signature generated for the AND-Join Pipe. As can be seen, it
differs from those of its sub-connectors, since it connects different and more connectors
(components) than its sub-connectors. Note how its signature is not the same as that of
its top-level sub-connector (Pipe). As we have explained, the signature of the AND-
Join Pipe is the union of the signatures of all sub-connectors that connect to at least one

(@ AND-Join
Pipe

(b)
Sequencer (Vector tget,
Vector op,
Vector par) ©
AND-Join-Pipe
(Vector targetPred,Vector operPred,Vector paramPred,
°p ‘ pmi ‘ pm2 “ pmN‘ Vector targetSucc,Vector operSucc,Object paramSucc)

tget ‘ predi ‘ pred2‘ ‘ predN ‘

par ‘ ppari ‘ ppar2‘ ‘ pparN ‘ targetPred ‘ pred1 pred2‘ ‘ predN ‘

operPred ‘ pmi ‘ pm2 “ pmN‘

Pipe (Vector tget, Vector op,
Vector par)

targetSucc | succ
tget | Sequencer | succ

o opersSucc smi
B execute smf

paramSucc spar
par | spar

paramPred ‘ ppari ‘ ppar2‘ ‘ pparN ‘

Fig.7. (a) Composition structure of AND-Join Pipe connector, (b) Signatures of its sub-
connectors and (c) Signature of AND-Join Pipe connector.

276 K.-K. Lau et al.

class AND-Join-Pipe extends Connector {
Sequencer seq;
AND-Join-Pipe (Vector targetPred, ...){

seq = new Sequencer (targetPred, ...);

o
Object execute ()({

result = seq.execute();
iééult = executeConnector (targetSucc.elementAt(0), ...)

return result;

}
}

Fig. 8. Outline of the code for the AND-Join-Pipe composite connector’s class

connector (component) outside of the boundary of the composition. Thus, as shown in
Fig.[7l(c), the signature of a AND-Join Pipe includes those for Sequencer and Pipe.

In the signature of the AND-Join Pipe, we have removed redundancies arising from
the signatures of Sequencer and Pipe. Notice how the signature elements corresponding
to the Pipe connector (targetSucc, operSucc and paramSucc) do not include an
entry for referring to the Sequencer connector. The connection to Sequencer is defined
in the composition structure of the composite connector and so has been coded in.

The connectors’ code of the AND-Join Pipe connector is a collaboration of the sub-
connectors’ codes and, as in basic connectors, it is encapsulated in its execute method.
Fig.[8lshows an outline of it.

When the connector is created, via its constructor, an instance of a Sequencer con-
nector is generated with the corresponding values in the signature, i.e. targetPred,
operPred and paramPred. Then, this instance (seq) is used in the execute method
to execute the Sequencer by calling its execute method. Later, and given that the type
of the successor connector is unknown at this point, the execution of the successor con-
nector is carried out by calling the executeConnector method.

The process of creating composite connectors can be partially automated by using a
graphical tool. We have implemented such a tool. The tool provides a visual way to drag
connectors into a composition environment, connect them and generate the skeleton for
the resulting connector’s class. The skeleton has to be filled in; this is done manually at
present. Then the completed connector can be deposited in the tool’s repository.

Fig. [9] shows an example of using this tool. On the left hand side, we can see a
Pipe and a Sequencer. These connectors are connected together using a line. The line
indicates to the tool that these connectors should be composed to make a composite con-
nector. The tool then generates a skeleton for the composite connector, and the user fills
in the skeleton. On the right hand side of Fig.[0] we can see the constructed connector,
AND-Join Pipe in the connector repository.

Analogously, a Pipe is composed with the Selector on the left hand side of Fig. [0l
The composition result is an Exclusive OR-Split Pipe connector. This composite con-
nector models the piping control that allows multiple successors but chooses only one
depending on the output value of the predecessor. This connector is constructed from
composing a Selector to the successor position of a Pipe. It behaves like the Exclusive

Composite Connectors for Composing Software Components 277

Compaonents Connectars

Fle Tools Analyses Help Add Connector...
D‘EW" u“ l&'\;|\"‘i';|:'»"'| J‘ oy ‘h“‘:’llj |\,_:;| Zoom — J— Companents | | Cannectors D P
Sl :I Shas el oty Gl Rt B et i :L] Add Connector.
1 S - . D SelectaCannectar D SelectorConnectar
PipeCormect]: : [PipaCannector]= - 1 B - rPseccioomens: [= ——

D InvocationConnector D IrvocationConnector
| seletuamector | [D LogpConneclor D LoopConnector
3 [D PipeConnector D PipeConnector

D SequencerConnector D SequencerConnector

=
- i SequencerConnector

B

D E xclusiveOrSplitFipe

Fig. 9. Building composite connectors by using a graphical tool

OR-Split workflow control-flow pattern [16]]. In Fig.[0l the Exclusive OR-Split Pipe has
also been constructed and put in the connector repository.
An example using these two composite connectors will be shown in next section.

5 Using Composite Connectors in Practice

Having explained how composite connectors are constructed, in this section, we show
to use composite connectors to build a complete system. We will use the example of an
Automatic Train Protection (ATP) system.

To construct a system from our components and composition connectors, we use an
assembler-container tool [9] that we have built. The assembler-container hosts compo-
nents and connectors and manages their assembly. It takes three main inputs: (a) a set
of components; (b) a set of composition connectors; and (c¢) an XML description of the
connector hierarchy of the system. The three inputs are independent from each other.
The output of the assembler-container is a run-time system constructed in accordance
with the XML description, with the top level connector as an interface to the system.

The assembler-container does not distinguish between basic and composite com-
position connectors. So we can use our composite connectors to build systems in the
assembler-container. As an illustration we will show how the ATP system can be built
both with and without composite composition connectors.

The ATP system is located on board a train to ensure safety. The system consists
of the following components: Sensor 1, 2 and 3, SensorAggregator, ATPController,
Brakes, Alarm, Speedometer and CautionStateProcessor. The sensors are attached to
the side of the train and detect information on the track-side signals. Each sensor gen-
erates a signal in the range {DANGER, CAUTION, PROCEED}. The overall resulting
signal is then sent to the other components. The components must respond to the signal
accordingly, e.g. Alarm and Brakes must be enabled when the signal is DANGER.

Using only basic connectors, the ATP system can be built with the architecture shown
in Fig.

This architecture consists of 9 components and 13 composition connectors on 6 levels.

278 K.-K. Lau et al.

N =

o1 [F5)

Compaonents m

. 1SelectoiConn | ;¢ ¢ Add Connector,
ector (53]
B i [srdopipe
5 D SelectorConnectar
PIDEEDm

D ATPSelectorConnectar

. [inwocationConnector
SelectorConn | |
5 1 B [ector[51] [D LoopCannectar
o f [SequenceiCo . s
e TR D PipeCannector
[5eg1] I onnector
L — Beqd) " (Fipetoment) [sequencertomector
2 . L Tarpe) : D
PipeConnect | | PipeConnest | | FineConnect |00k : L — e ;
o [F1)] YT ERERTE PR TR} | B b EnclusiveliSpliPipe
i R R ey B PipeConnect | |- :
[Squ] o [F7] SelectorCorn
e ector (52) | -
InvocationCo | | InwocationCa | | InvocationCo | | InvocationCo | | InvocationCo | | InvocationCo \nvncahnn[ﬁn InvocationCo f] InvocationCo | ©
nrectar [11] nrectar [12] nhector [13) nhector (14] nnector (5] nnector (6] nnector [17] nnector (18] nnector [19) - - -

Fig. 10. Automated Train Protection System without composite connectors

File Tools Analyses Help

SETTLIE o

Zoom T

plitFipe

1B

- [AndloinFips | ;
Py [

Sequencer]
nnector

Co

. ... |PipeCornect | |
| e |

InvocationCo
nnector (7]

InvocationCo
nnector [|E]

InvocationCo
nnector (15]

InvocationCo
nrector [14]

InvocationCo
nnector [13]

InvocationCo
nhector (12)

* | InvocationCo
nrector [|1]

InvocationCa

nrector (18]

InvocationCo
nrector [|9]

Components | Connectors

Add Connector...

*] SelectorCann
ector (53
5 &3 D AndlainPipe
* [Erchusive0rs D SelectorConnectar

D ATPSelectorConnecto
0

D ImwocationConnector

[5eg3]
o BartRrEnlibe it o . G GEn e Saa e [—
.| PipeConnect | | PipeConnect | | FipeConnect : Sep Rt SRS e e 5 SRR
: o [P1) or[F2] of [F3) i e B 5 PipeCannect A1 S S D PipeConnector
S T BemeRTE B i B arF7] : [Sekctotbenn| -
. : ector (32)) sequencetConnector

D ExclusiveDiSplitPipe

Fig. 11. Automated Train Protection System with composite connectors

Looking at the connector hierarchy in Fig. it is clear that we can compose some
basic connectors into composite connectors. The latter are indicated in the figure by two
groups of basic connectors encircled by a bold line. These two composite connectors
are in fact an AND-Join Pipe and an Exclusive OR-Split Pipe (Section 3.

The graphical tool for building composite connectors (Section£3) is integrated with
the assembler-container, so we can build the AND-Join Pipe and Exclusive OR-Split
Pipe connectors in the assembler-container, and then use them to build the ATP system.

Using these composite connectors, we can reduce the complexity of the ATP system,
and change its architecture to that in Fig. [T}

From the system architecture in Fig. [I1] we can see that a composite connector is
used in the same manner as the basic ones in hierarchical composition. Also, comparing

Composite Connectors for Composing Software Components 279

Fig.[[0land Fig.[TT} we see that using composite connectors reduces the complexity of
ATP system by 2 connectors and 1 hierarchy level.

6 Discussion

As pointed out in [15], software systems are getting increasingly complex, and so
building them will require more powerful connectors than basic ones such as RPC (re-
mote procedure call). We believe our approach to composite connectors can be used to
build suitable connectors. By building composite connectors hierarchically from sub-
connectors, we can build composites of arbitrary complexity and functionality.

Our connectors are generic, compositional and reusable. Their genericity and com-
positionality are demonstrated by the fact that they are control flow patterns. They be-
have like object-oriented design patterns [6] that coordinate communications between
objects, e.g. the Observer pattern, as we saw in Section[4.1l Furthermore, because they
coordinate components that do not initiate communication with other components, they
correspond even more closely to workflow control-flow patterns [[16].

However, in contrast to object-oriented design patterns and workflow control-flow
patterns, our composite connectors are reusable as real pieces of implementation. Object-
oriented design patterns are generic solutions. The idea behind such a pattern can be used
for many applications, but the pattern itself has no generic implementation and has to
be coded into every application. A workflow control-flow pattern also does not have any
generic implementation. This is because it represents a process, and it is only defined
when the workflow (with the activities involved) has been fixed.

Clearly there are object-oriented design patterns that cannot be represented by our
composite connectors, namely (i) patterns that do not coordinate communications, (ii)
patterns that are specific only to objects, e.g. creational patterns. Conversely, there are
object-oriented design patterns that can be represented as a basic connector in our
model. For example, the Mediator pattern can be implemented as a Sequencer that has
been enhanced with an iterator.

Equally, there are many workflow control-flow patterns that cannot be represented
by our composite connectors. In particular, those that involve concurrency. We have no
concurrency in our model as yet.

7 Conclusion

In this paper we have presented a set of composite composition connectors for compo-
nent composition, which are ready-to-use for building systems out of reusable compo-
nents encapsulating computation only. These operators are defined within the context
of our component model, and are based on the idea of exogenous connectors.

We have demonstrated that the hierarchical nature of our exogenous composition
connectors makes it not only possible, but also easy to generate composite composition
connectors. We have demonstrated the use of our connectors for constructing systems
by means of an example. Additionally, these composite composition connectors can
also be seen as patterns that can be used to perform complicated compositions involving
many components all in a single step.

280 K.-K. Lau et al.

To further enhance its usefulness and efficiency, we plan to extend our set of basic
operators to concurrency, so that we get composites able to deal with multi-threading
issues, etc.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science 14(3), 329-366 (2004)

2. Arbab, F.: Abstract behavior types: a foundation model for components and their composi-
tion. Sci. Comput. Program. 55(1-3), 3-52 (2005)

3. Bohm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only two for-
mation rules. Communications of the ACM 9(5), 366-371 (1966)

4. Bures, T., Plasil, F.: Composing connectors of elements. Technical Report 2003/3, Dep. of
SW Engineering, Charles University, Prague (2003)

5. Bures, T., Plasil, F.: Scalable-element based connectors. In: Ramamoorthy, C.V., Lee, R.,
Lee, K.W. (eds.) SERA 2003. LNCS, vol. 3026, pp. 198-204. Springer, Heidelberg (2004)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, Reading (1995)

7. Lau, K.-K., Elizondo, P.V., Wang, Z.: Exogenous connectors for software components. In:
Heineman, G.T., Crnkovic, 1., Schmidt, H., Stafford, J., Szyperski, C., Wallnau, K. (eds.)
Proceedings of 8th Int. SIGSOFT Symposium on Component-based Software Engineering,
pp- 90-106. Springer, Heidelberg (2005)

8. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its preliminary formal-
isation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 1-21. Springer, Heidelberg (2006)

9. Lau, K.-K., Ukis, V.: Automatic control flow generation from software architectures. In:
Lowe, W., Stidholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 323-338. Springer, Heidelberg
(2006)

10. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: A compositional approach to connector con-
struction. In: Cerioli, M., Reggio, G. (eds.) WADT 2001. LNCS, vol. 2267, pp. 201-220.
Springer, Heidelberg (2002)

11. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. Software Engineering 26(1), 70-93 (2000)

12. Le Metayer, D., Nicolas, V.-A., Ridoux, O.: Programs, Properties, and Data: Exploring the
Software Development Trilogy. IEEE Software 15(6), 75-81 (1998)

13. Papadopoulos, G.A., Arbab, F.: The Engineering of Large Systems. Advances in Comput-
ers 46, 329400 (1998)

14. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

15. Spitznagel, B., Garlan, D.: A compositional approach for constructing connectors. In:
WICSA 2001. In: Proceedings of the Working IEEE/IFIP Conference on Software Archi-
tecture (August 2001)

16. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. In: Distributed and Parallel Databases, pp. 5-51 (2003)

	Introduction
	Related Work
	Exogenous Composition Connectors
	A Hierarchy of Composition Connectors

	Composite Composition Connectors
	Composite Connectors are Patterns
	Constructing Composite Connectors
	Example

	Using Composite Connectors in Practice
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

