
Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01114-4

REGULAR PAPER

Verifying consistency of software product line architectures with
product architectures

Hector A. Duran-Limon1 · Perla Velasco-Elizondo2 ·Manuel Mora3 ·Maria E. Meda-Campana1 · Karina Aguilar4 ·
Martha Hernandez-Ochoa5 · Leonardo Soto Sumuano1

Received: 9 May 2022 / Revised: 27 April 2023 / Accepted: 24 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
There has been increasing interest inmodeling software product lines (SPLs) using architecture description languages (ADLs).
However, sometimes it is required to reverse engineer an SPL architecture from a set of product architectures. This procedure
needs to be performedmanually as currently does not exist tool support to automate this task. In this case, verifying consistency
between the product architectures and the reverse engineered SPL architecture is still a challenge; particularly, verifying
component interconnection aspects of product architectures with respect to the commonality and variability of an SPL
architecture represented in an ADL. Current approaches are unable to detect whether the component interconnections in a
product architecture have inconsistencies with the component interconnections defined by the SPL architecture. To tackle
these shortcomings, we developed the Ontology-based Product Architecture Verification (OntoPAV) framework. OntoPAV
relies on the ontology formalism to capture the commonality and variability of SPLs architectures. Reasoning engines are
employed to automatically identify component interconnection inconsistencies among SPL and product architectures. Our
evaluation results show that our verifier has a high accuracy for detecting consistency errors and that it scales linearly for
architectures from 1000 to 5000 architecture elements.

Keywords Software product lines · Software architecture · SPL Verification · Architecture verification · Ontologies ·
Model-driven engineering

Communicated by Ina Schaefer.

B Hector A. Duran-Limon
hduran@cucea.udg.mx

Perla Velasco-Elizondo
pvelasco@uaz.edu.mx

Manuel Mora
mmora@correo.uaa.mx

Maria E. Meda-Campana
emeda@cucea.udg.mx

Karina Aguilar
kaguilar@edu.uag.mx

Martha Hernandez-Ochoa
martha.ochoa@cunorte.udg.mx

Leonardo Soto Sumuano
leonardo.soto@cucea.udg.mx

1 University of Guadalajara, CUCEA, Guadalajara, Jalisco,
Mexico

2 Autonomous University of Zacatecas, Zacatecas, Mexico

1 Introduction

Software product lines (SPLs) have proved to improve soft-
ware quality and shorten costs and development time [1,
2]. An SPL is a family of software systems that share a set
of common assets (commonly referred to as the SPL com-
monality) but also have some other characteristics that make
them different from each other (commonly named as SPL
variability). Feature modeling [3] is a technique that allows
for specifying commonalities and variabilities in an SPL. A
feature represents an increment in product functionality [4].
Features are commonly represented in a tree structure called
a feature diagram. A product configuration involves a selec-

3 Autonomous University of Aguascalientes, Aguascalientes,
Mexico

4 Autonomous University of Guadalajara, Guadalajara, Jalisco,
Mexico

5 University of Guadalajara, CUNORTE, Guadalajara, Jalisco,
Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01114-4&domain=pdf

H. A. Duran-Limon et al.

tion of features from an SPL. Such a configuration represents
a member of the product family. There are different types of
relationships between a parent feature and a child feature [4].
A Mandatory relationship states that the child is included in
all products belonging to the SPL to which the parent ele-
ment belongs as well. An Optional relationship means that
the child may or may not be part of a product. An Alternative
relationship indicates that only one feature of a set of child
features can be part of a product, whereas an OR relation-
ship means that one or more features of a set of child features
can be part of a product. Regarding cross-tree relationships,
a requires relationship indicates that a feature requires the
presence of another feature, whereas an excludes relation-
ship excludes the presence of another feature.

Product derivation concerns the process of building a
product from an SPL at the implementation level, whereas
product architecture derivation (also called architecture cus-
tomization process) aims at producing a product-specific
architecture from a generic product line architecture. The
variability in the feature model is often expressed in terms
of variation points (VPs), i.e., an area affected by variability,
and systems options known as variants.1 This variability can
be also described in the software architecture and represented
through different mechanisms. There has been increasing
interest in modeling SPLs using Architecture description
languages (ADLs), such as Koala [5] and PL-Xelha [6].
ADLs [7] represent formal notations for describing software
architectures in termsof coarse-grained components and con-
nectors.

Importantly, consistency errors can take place when an
SPL architecture is reverse engineered [8–10] from dif-
ferent product architectures involving legacy applications.
Although there have been some attempts to reverse engineer
an SPL architecture [11–13], to the best of our knowledge,
currently there are not approaches able to automatically
extract ADL-based SPL architectures. Hence, the proce-
dure to extract an SPL architecture fromADL-based product
architectures needs to be carried out manually. Consistency
errors (or inconsistencies) between an SPL architecture and
a product architecture are those that make them incompati-
ble so that the product architecture cannot be derived from
the SPL architecture. For example, there is an inconsistency
when a Mandatory connection defined in the SPL architec-
ture is not present in a product architecture. Several efforts
have focused on verifying consistency of feature models
[14–18]. Other research has focused on verifying consis-
tency of SPL architectures [19–24]. Only a few approaches
have addressed the issue of checking consistency between
a product architecture and an SPL architecture, but mainly

1 We distinguish the term variant from the term product variant. The
former is an option of a variation point, whereas the latter is a specific
derived product.

focusing on behavioral aspects [22, 23]. Hence, to the best
of our knowledge there are not approaches able to verify the
consistency of component interconnection aspects between
a product architecture and the SPL architecture represented
in an ADL.

In this paper, we present the Ontology-based Product
Architecture Verification (OntoPAV) framework, which ver-
ifies consistency between the component interconnections
of a product architecture and the component interconnec-
tions defined in the SPL architecture. Our solution uses a
language-independent approach to perform the verification
process. We rely on the ontology formalism to capture the
commonality and variability of an SPL architecture. In par-
ticular, we employ Pellet [25], an ontology reasoner, to check
consistency of product architectures. Although our approach
involves the use of a formal method (i.e., ontology for-
malism), the user does not require any knowledge about
ontologies nor special training in any other technique from
formal methods. We make use of model-driven engineering
(MDE) techniques [26] to automate the generation process
of the populated ontology. We have built a prototype to test
our approach. Also, we developed an SPL of a web scholar
system as a case example.

We rely on the same meta-metamodel of the SPL Lan-
guage defined in our previous work on product architecture
derivation [6], which focused on automating the derivation of
product architectures that are modeled with an ADL. Apart
from the Reasoning Engine (a third party component), all
the modules of the framework of the present work are differ-
ent from those of the previous work.2 In addition, this work
is different from our previous work in two ways, mainly.
First, in our previous work the generated populated ontol-
ogy captures information about the SPL architecture and the
feature tree, whereas in this work the produced populated
ontologies include information about both the SPL architec-
ture and a product architecture. Second, our previous work
focused on generating a product architecture, whereas this
work focuses on verifying the consistency of product archi-
tectures of legacy systemswith regard to a reverse engineered
SPL architecture.

The paper is structured as follows. Section 2 presents a
motivating example. The OntoPAV framework is described
in Sect. 3. Our ontology and the verification rules are defined
in Sect. 4. Section 5 presents the Verification process to find
the origin of errors. Evaluation results are shown in Sect. 6.
Related work is included in Sect. 7. Finally, some concluding
remarks are given in Sect. 8.

2 Even the Ontology Factory is different, as in the present work the
populated ontology generated by this Factory states the validMandatory
connections, OR connections, Alternative connections, and Optional
connections as well as the requires/excludes restrictions. None of these
restrictions are defined in the populated ontologies of our previouswork.

123

Verifying consistency of software product line architectures with product architectures

2 Motivating example

Weuse a running example to illustrate the proposedOntoPAV
framework throughout the paper. Our running example con-
sists of a scholar system whose first products were not
developed within an SPL. Although we do not have an SPL
architecture of the system, there are a number of product
architectures. Hence, the SPL architecture is reverse engi-
neered. This is carried outmanually given that currently there
are not tool support for automating this task. We present
two product architectures of the scholar system in Fig. 2.
However, all the product architectures employed to reverse
engineer the SPL architecture can be consulted in [27].

The scholar system allows for managing the information
of students, teachers as well as the subjects and courses
taught. The first configuration (i.e., product architecture 1),
shown in Fig. 2, can run a single term, whereas the second
configuration (i.e., product architecture 2) can run multiple
terms concurrently. The area of specialization is an Optional
feature, given that it is present in the product architecture 1,
but it is not present in the product architecture 2. Upon fin-
ishing the courses included in a degree, the scholar system
can offer different options for finishing such a degree, namely
thesis, research article, and two or more years of professional
practice. The product architecture 1 includes the former two,
whereas the product architecture 2 includes the thesis and
professional practice.

A correctly derived SPL architecture of the scholar sys-
tem is depicted in Fig. 3 in PL-Xelha [6], which involves 14
product architectures (and an SPL architecture with errors is
shown in Fig. 4). Throughout the paper, we use PL-Xelha [6]
only as a way to illustrate our approach since OntoPAV is
language-independent, as mentioned earlier. Therefore, any
modeling language that complies with the meta-metamodel
defined in our previous work [6] can be used. Our meta-
metamodel was defined in the metaobject facility (MOF).3

Figure1 depicts the meta-metamodel [6],4 which defines
the architectural commonality and variability. The former
is defined in terms of Nodes and Connections. Nodes rep-
resent fixed architectural elements, whereas a Connection
is a binding between nodes. Also, Nodes may have Ports,
which are interaction points. ProvidedPorts offer services,
whereas RequiredPorts require them. Ports are inner ele-
ments of both Nodes and variant elements. On the other
side, Variability includes VariationPoints and Variants. The
former permit the selection among differentVariants. In addi-
tion, VariantConnections are connections that bind Variants
to VariationPoints.

In PL-Xelha, there are two kinds of interfaces: provided
and required. The former is represented by facets and offer

3 http://www.omg.org/mof/.
4 https://github.com/hduran-limon/copyRightMetaModel.

Fig. 1 Meta-metamodel

services, whereas the latter is denoted by receptacles and
requires services. The SPL architecture includes a num-
ber of Mandatory components, such as c_student and
c_teacher, which are represented with solid line boxes
and are stereotyped as <<component>>, as shown in
Fig. 3. Variation points are denoted with dotted line boxes
and are stereotyped as <<optionalComponent>>,
which have one associated or more features.5 Variants are
represented with solid line boxes and are stereotyped as
<<variant>> and have defined the feature that repre-
sents. A feature can be mapped to one or more compo-
nents and a component can also define dependencies with
other features; however, none of these characteristics are
employed in order to simplify our example. vp_area rep-
resents an Optional variation point, which is realized by
the variant c_area when the feature Area is selected.
An Optional variation point can have associated one or
more Optional connections. An Optional connection is
a connection (represented with a dotted line), which is
optional. For instance, c_ui employs an Optional connec-
tion to connect to vp_area, and the latter also employs an
Optional connection to connect to c_course. In case the
feature Area is selected, these two connections are real-
ized in the corresponding product architecture; otherwise,
both connections are removed. vp_term is an Alterna-
tive variation point, which can be realized by the variant
c_single_term in case the feature Single is selected,
whereas c_multiple_term instantiates this variation
point when the feature Multiple is chosen. An OR varia-
tionpoint is conformedbyvp_professionalPractice,
vp_article, and vp_thesis, and one or more of them
can be instantiated by their associated variants. This depends
onwhether one ormore of the following features are selected:

5 PL-Xelha is also able to denote connectors and Optional connectors,
which in our running example are not used.

123

http://www.omg.org/mof/
https://github.com/hduran-limon/copyRightMetaModel

H. A. Duran-Limon et al.

Fig. 2 Product architectures of the scholar system

Fig. 3 SPL architecture of the scholar system without errors

Fig. 4 SPL architecture of the scholar system with errors

123

Verifying consistency of software product line architectures with product architectures

Fig. 5 Feature model tree of the scholar system

ProfessionalPractice, Article, and Thesis.
Lastly, the variant c_single_term requires c_area,
whereas the variant c_multiple_term excludes it. The
variability of the product family of the scholar system is
shown in the feature tree of Fig. 5.6

Now, consider the SPL architecture that is derived with
errors (highlighted in red), as shown in Fig. 4. Such errors
may not be easy to identify without performing an auto-
mated verification process. First of all, there are a number
of Mandatory connections in the product architectures that
do not appear in the SPL architecture, namely the con-
nections between c_ui and c_course, and c_ui and
c_teacher. Although in the latter case c_ui is con-
nected to c_teacher, the facet interface name is wrong
as it should be Iteacher instead of Isubject. Then,
c_ui should be connected to vp_term, as shown in
Fig. 3; however, this connection does not appear in Fig. 4.
Also, c_degree should be connected to the following
Alternative components: vp_professionalPractice,
vp_article, and vp_thesis. Nevertheless,c_degree
is not connected to any of them. On the other side, there
are number of invalid connections in the SPL architec-
ture, i.e., connections that are not defined in the cor-
rectly derived SPL architecture, which involve the con-
nections between c_degree and vp_term, c_ui and
vp_article, c_ui and vp_thesis, and c_ui and
vp_professionalPractice, as shown in Figs. 3 and 4.
Furthermore, c_area should be required by c_single_
term; however, this component is requiredbyc_multiple
_term (see Figs. 3, 4).

Consequently, we illustrate in the following sections,
via our motivating example, how we can verify consis-
tency between the component interconnections of a product
architecture and the component interconnections of the SPL
architecture.

6 Although the feature tree is not used by OntoPAV, we show it in order
to improve the understandability of the motivating example.

3 The OntoPAV framework

The main elements of the OntoPAV framework, and their
relationships, are presented in the collaboration diagram
depicted in Fig. 6. The ADL definitions of both the SPL
architecture and the product architecture are the inputs of
OntoPAV. These architectures can be defined in any ADL
that complies with our meta-metamodel [6]. For instance,
both the SPL architecture and the product architecture of the
running example are defined in PL-Xelha, as shown in Figs. 3
and 2,7 respectively. These ADL definitions are transformed
to a populated ontology by the Ontology Factory. A popu-
lated ontology includes instances of concepts, defined in the
Ontology, such as component, connector, interface, feature,
and variant. The populated ontology is used to verify consis-
tency between the component interconnections of the product
architecture and the component interconnections of the SPL
architecture. In order to achieve language independence, a
specific factory is generated for a specific SPL language.

While the Ontology Factory is language-dependent (e.g.,
PL-Xelha requires a different implementation of this factory
from that needed by Koala), the rest of the modules do not
have any dependencies on the SPL language employed.

The Ontology Factory asks the Verification Manager to
verify the populated ontology (step 1). The Verification
Manager is in charge of coordinating the checks performed
and also delivers the verification result. For this purpose,
the Verification Manager first makes a query to identify
invalid connections (step 2). Second, the Verification Man-
ager checks consistency of the populated ontology (this
reflecting consistency of the product architecture, step 3);
both cases with the aid of the Reasoning Engine. In case
one or more inconsistencies are detected, the Verification
Manager asks the Debugger to find the origin of such incon-
sistencies (step 4). In order to find an inconsistency, the
Debugger checks consistency on different subsets of the pop-
ulated ontology to find the errors (step 5). The Debugger
returns information with the origin of errors to the Verifica-
tion Manager (step 6), which in turn informs the user about
the verification result (step 7).

Verifying component interconnections involves check-
ing that in the product architecture Mandatory connections
are present, Alternative connections have one and only one
connection, OR connections have at least one connection,
and Optional connections are present in case the associated
Optional variation point is instantiated. Our framework also
checks that invalid connections are not present in the product
architecture. That is, OntoPAV checks that only component
connections defined in the SPL architecture are present in
the product architecture whereby components and connec-

7 Only one architecture definition is taken as input of a product archi-
tecture of OntoPAV.

123

H. A. Duran-Limon et al.

Fig. 6 Main elements of OntoPAV

tors in the product architecture are interconnected in the right
sequential order and with the right interface types. Lastly,
our framework checks that requires/excludes relationships
are met.

OntoPAV can be used as follows. The software architect
employs OntoPAV to check consistency between a reverse
engineered SLP architecture and a product architecture.
In case inconsistencies are detected, the software architect
makes corrections to the SPL architecture and checks consis-
tency again with the same product architecture. The architect
makes corrections if inconsistencies are still detected, and so
on. The same process is applied for each one of the product
architectures from which the SPL architecture was reverse
engineered. Future work considers verifying the SPL archi-
tecture with the product architectures altogether in order to
facilitate the process of making corrections to the SPL archi-
tecture.

In the following section,we present details of our ontology
and the verification rules we employ.

4 Verification rules and queries

An ontology is a formal and explicit specification of a shared
conceptualization of a domain [28, 29].Wemake use ofOWL
[30] to represent ontologies. OWL is based on description
logic (DL) [31], which is a family of logic-based knowledge
representation formalisms. We use the Manchester OWL
Syntax [30] to illustrate the OWL descriptions used for the
verification. This syntax is easy to read and write and is
mainly employed by many ontology editing tools such as
Protégé [30].

An ontology employs individuals, classes, and object
properties to describe the domain. Individuals, which are the

basic units in the domain, are instances of classes. Sets of
individuals with similar characteristics conform to classes.
Object properties represent binary relationships between
individuals. Class constructors include the use of inter-
section, union, and complement operations as well as the
existential8 and universal 9 quantifiers, which in the Manch-
ester OWL syntax are denoted by the keywords some and
any, respectively. Class hierarchies can be defined by using
the subclass property. A subclass is a subset of individuals
of its parent class. A necessary condition10 is represented
as an anonymous superclass, whereas a necessary and suffi-
cient condition11 is represented as an equivalent class in the
Manchester OWL Syntax format. Both conditions are also
called restrictions. These and other features of OWL can
be used to give a precise and unambiguous meaning to the
descriptions of the domain.

The elements of our ontology are represented in the SPL
architecture metamodel depicted in Fig. 7. Hence, our ontol-
ogy includes components, connectors, interfaces, and con-
nections, which are used to represent product architectures.
The ontology additionally employs Optional components,
Optional connectors, variants, and features to represent SPL
architectures. The former two are also called variation points.
The population process of our ontology in OWL is based on
the work of Wang et al. [32] where ontologies are used to

8 This means that if a relation exists, at least one relation should exist
with the specified class at the right side of the relation.
9 Thismeans that if a relation exists, none relationor atmost one relation
could exist with the specified class at the right side of the relation.
10 If an individual is a member of this class, then it is necessary to
fulfill this condition, but we cannot say that if an individual fulfills this
condition, then it must be a member of this class.
11 If an individual is a member of this class, then it is necessary to fulfill
this condition, and if an individual fulfills this condition, then it must
be a member of this class.

123

Verifying consistency of software product line architectures with product architectures

model feature relationships. We populate an ontology as fol-
lows.

First, we make use of disjoint OWL classes to represent
components, connectors, Optional components, Optional
connectors, interfaces, variants, and features. Each of these
classes keep a subclass relationship with the OWL class
Root. For instance, the component c_student is repre-
sented as an OWL class named c_student. Variants keep
a subclass relationship with their associated variation points
(i.e., Optional components and Optional connectors).

Second, each class defined previously12 has an equiv-
alence statement, placed within its associated OWL class.
Such an equivalence statement is a necessary and sufficient
condition that binds the class to an existential restriction. For
example, the existential restriction hasC_student some
c_student is defined with an equivalence statement in the
OWL class c_student.

Third, we represent component and connector connec-
tions with existential statements as follows. Consider that
the receptacle interface Ii of elementc is connected
to the facet interface Ij of elementd. Such a connec-
tion is represented in the following form: elementc −
IiIsNextTo some elementd − Ij. For example, the
following statement specifies that the receptacle interface
Istudent of the component c_ui is connected to the
facet interface also named Istudent of the component
c_student.

(c_ui-IstudentIsNextTo some c_student
- Istudent)

Fourth, we included OWL restrictions in charge of associ-
ating features with components and connectors. For instance,
the OWL class named c_student has the existential state-
ment hasStudent some Student.

Fifth, we define a number of OWL restrictions for each
class to specify Mandatory, OR, Alternative, Optional, and
requires/excludes relationships (see below). In addition, we
define a query mechanism, which is not part of a populated
ontology, in charge of identifying invalid connections (see
below).

4.1 Verification rules

The verification rules are defined in terms of OWL restric-
tions and are used to detect inconsistencies between a product
architecture and the SPL architecture. Next, we define one
rule for product architectures, followed by six rules for the
SPL architecture.

Rule 1.Define restrictions for elements of the Product archi-
tecture. An element can be a connection, a component, or a

12 This with the exception of the classes defined for features and inter-
faces.

Fig. 7 SPL architecture metamodel

connector. We define an OWL restriction that specifies the
elements that are present and those that are not present in the
product architecture.

Definition 1 Let elem1, elem2,... elemm be the elements
that are present in the SPL architecture but are not present
in the product architecture and elemm+1, elemm+2,...
elemm+x be the elements that are present in both the SPL
architecture and the product architecture. Such elements are
specified with a necessary and sufficient condition in the
OWL class named E_Product13 with the following form:

not (elem1) and not (elem2) and not....
and not (elemm) and (elemm+1) and (elemm+2)

and... and (elemm+x)

In the case of our running example, below we specify an
excerpt of the connections in the SPL architecture with errors
(Fig. 4) that are not present in the product architecture 1 (see
Fig. 2a), which represent the connections of c_degreewith
c_single_term and c_multiple_term, respectively.
It is also specified that the component c_multiple_term
is not present:

not (c_degree-ItermIsNextTo some c
_single_term-Iterm)
not (c_degree-ItermIsNextTo some c_mu
ltiple_term-Iterm)
and not (hasC_multiple_term some c_mu
ltiple_term)
...

Wepresent below an excerpt of the statement that specifies
the connections that are present in the product architec-
ture 1 (see Fig. 2a) involving the connections of c_ui with
c_teacher and c_subject, respectively. It is also spec-
ified that the component c_student is present:

13 E_Product is placed at the same level of Root in the populated
ontology hierarchy.

123

H. A. Duran-Limon et al.

(c_ui-IteacherIsNextTo some c_teacher
-Iteacher)
and (c_ui-IsubjectIsNextTo some c_sub
ject-Isubject)
and (hasC_student some c_student)
...

Note that we have split the restriction statement into two
parts for clarity only as both of them form a single restriction.

Rule 2.Define restrictions for Mandatory connections of the
SPL architecture. A Mandatory connection in an SPL archi-
tecture takes place between two Mandatory elements and
there is a one-to-one relationship.

Theorem 2 Let P = {a1,a2,...,an} be the set of Mandatory
connections defined in an SPL architecture and let Q =
{b1,b2,...,bm} be the set ofMandatory connections not defined
in a product architecture, where Q ⊆ P. We associate the
logical rule ruleP with P and the logical rule ruleQ with Q
where:

ruleP ⇒ a1 and a2 and... and an and ruleQ ⇒
not (b1) and not (b2) and... and not (bm)
If there exists at least one connection ai ∈ P and one con-
nection bj ∈ Q such that bj = ai and as a consequence
Q �= ∅, then a Mandatory condition is not met indicating
that the product architecture is not consistent with the SPL
architecture. In this case, ruleP represents verification Rule
2 and ruleQ represents a simplification of verification Rule 1
involving only the set of Mandatory connections not defined
in the product architecture and omitting any other type of
connections.

Proof Ifwe assume that both ruleP and ruleQ are true and that
there exists at least one connectionai ∈P andone connection
bj ∈ Q such that bj = ai and as a consequence Q �= ∅, then
we have that ruleP ⇒ Q = ∅, which is a contradiction, and
therefore, aMandatory condition is not met.

Definition 2 Let conni be a Mandatory connection of the
SPL architecture. There can be multiple Mandatory connec-
tions, which we can represent as conn1, conn2, conn3,...,
connn. Such connections are specifiedwith a necessary con-
dition in the OWL class Root with the following form:

(conn1) and (conn2) and... and (connn)

Some of the Mandatory connections in our running
example (see Fig. 3) are the connections of c_ui with
c_student and c_teacher, which are represented as
follows:

(c_ui-IstudentIsNextTo some c_student
-Istudent)
and (c_ui-IteacherIsNextTo some c_tea
cher-Iteacher)

Rule 3. Define restrictions for OR connections of the SPL
architecture. OR connections involve variation points whose
variant connections have an OR relationship.

Theorem 3 Let P = {a1,a2,...,an} be the set of OR connec-
tions defined in an SPL architecture and let Q= {b1,b2,...,bm}
be the set of OR connections not defined in a product archi-
tecture, where Q ⊆ P. We associate the logical rule ruleP
with P and the logical rule ruleQ with Q where:

ruleP ⇒ a1or a2or.... or an
and ruleQ ⇒ not (b1) and not (b2) and.... and

not (bm)
If there exists for each connection ai ∈ P one connection
bj ∈ Q such that bj = ai and as a consequence Q = P,
then an OR condition is not met indicating that the product
architecture is not consistent with the SPL architecture. Here,
ruleP represents verification Rule 3 and ruleQ represents a
simplification of verification Rule 1 involving only the set of
OR connections not defined in the product architecture and
omitting any other type of connections.

Proof If we assume that both ruleP and ruleQ are true and
that for each connection ai ∈ P there exists one connection
bj ∈ Q such that bj = ai and as a consequence Q = P, then
we have that ruleP ⇒ Q �= P, which is a contradiction, and
therefore, an OR condition is not met.

Definition 3 Let variantConni be an OR connection
of a variation point of the SPL architecture. There can
be two or more OR connections associated with a vari-
ation point, which we can represent as variantConn1,
variantConn2, variantConn3,..., variantConnn.
Such OR connections are specified with a necessary con-
dition in the OWL class Root with the following form:

(variantConn1) or (variantConn2) or....
o r (variantConnn)

For example, the following statement specifies the OR
relationships of the connections of c_degree with the
instantiation of the variation pointsvp_professionalPr

actice, vp_article, and vp_thesis (see Fig. 3).
(c_degree-IdegreeOptionIsNextTo some

c_professionalPractice-Iprofessional
Practice)
or (c_degree-IdegreeOptionIsNextTo some
c_article-Iarticle)s
or (c_degree-IdegreeOptionIsNextTo some
c_thesis-Ithesis)

Rule 4.Define restrictions for Alternative connections of the
SPL architecture. Alternative connections involve variation
points whose variant connections have an Alternative rela-
tionship.

Theorem 4 Let P = {a1,a2,...,an} be the set of Alternative
connections defined in an SPL architecture and let Q1 =
{b1,b2,...,bm} be the set ofAlternative connections not defined
in a product architecture and Q2 = {bm+1,bm+2,...,bm+x }

123

Verifying consistency of software product line architectures with product architectures

be the set of Alternative connections defined in a product
architecture, where P = Q1 ∪ Q2. We associate the logical
rule ruleP with PandthelogicalruleruleQ with Q where:

ruleP ⇒ (not (a1) and not (a2) and not
(a3) and not... and not (an-1) and an)
or (not (a1) and not (a2) and not (a3) and

not... and (an-1) and not an)
or (not (a1)and not (a2)and not (a3)and

not... and (an-2)and not (an-1)and not an)
...
(or (a1) and not (a2) and not (a3) and not
...and not (an-1) and not (an))

and ruleQ ⇒ not (b1) and not (b2) and not
....and not (bm) and (bm+1) and (bm+2) and...
and (bm+x)

In this case, ruleP represents verification Rule 4 and ruleQ
represents a simplification of verification Rule 1 involving
only the set of Alternative connections not defined and those
that are defined in the product architecture and omitting any
other type of connections.

Theorem 4 a. If we have Q2 = ∅ and that for each ai ∈ P
there is a bj ∈ Q1 such that bj = ai and as a consequence
Q1 = P, then we have that an Alternative condition is not met
indicating that the product architecture is not consistent with
the SPL architecture.

Proof If we assume that both ruleP and ruleQ are true and
Q2 = ∅ and that for each ai ∈ P there is a bj ∈ Q1 such that
bj = ai and as a consequence Q1 = P, then we have that
ruleP ⇒ Q1 �= P, which is a contradiction, and therefore, an
Alternative condition is not met.

Theorem 4 b. If Q1 �= P and there exists at least one pair of
connections ai and ak ∈ P and one pair of connections bj
and bl ∈Q2 such that bj = ai and bl = ak where i and k ∈
{1,2,...,n},i<k,j and l ∈ {m+1,m+2,...,m+x}
and j<l and as a consequence |Q2 |> 1, then we have that
anAlternative condition is notmet indicating that the product
architecture is not consistent with the SPL architecture.

Proof If we assume that both ruleP and ruleQ are true andQ1
�= P and that there exists one pair of connections ai and ak
∈ P and one pair of connections bj and bl ∈ Q2 such that
bj = ai and bl = ak and as a consequence | Q2 | > 1, then
we have that ruleP ⇒ | Q2 | = 1, which is a contradiction,
and therefore, an Alternative condition is not met.

Definition 4 LetvariantConni be anAlternative connec-
tion of a variation point of the SPL architecture. There can be
two ormoreAlternative connections, whichwe can represent
asvariantConn1,variantConn2,variantConn3,...,

variantConnn. Such Alternative connections are spec-
ified with a necessary condition in the OWL class of the
variation point with the following form:

(not (variantConn1) and not (variant
Conn2) and not (variantConn3) and not...
and not (variantConnn-1) and variantConnn)

or (not (variantConn1) and not (varia
ntConn2) and not (variantConn3) and not
... and (variantConnn-1)and not variantConnn)

or (not (variantConn1)and not (variantConn2)
and not (variantConn3) and not...
and (variantConnn-2)and not (variantConnn-1)
and not variantConnn)
...

or ((variantConn1) and not (variant
Conn2) and not (variantConn3) and not...
and not (variantConnn-1) and not (variant
Connn))

For example, the following statement specifies the Alter-
native relationships of the connections of the component
c_uiwith the instantiationof thevariantsc_single_term
and c_multiple_term (see Fig. 3).

(not (c_ui-ItermIsNextTo some c_sing
le_term-Iterm)
and (c_ui-ItermIsNextTo some c_mult
iple_term-Iterm))
or (not (c_ui-ItermIsNextTo some c_mult
iple_term-Iterm)
and (c_ui-ItermIsNextTo some c_single
_term-Iterm))

Rule 5. Define restrictions for Optional connections associ-
atedwith anOptional variation point in the SPL architecture.
This rule involves two parts. Part 1 regards a restriction indi-
cating the Optional variation point is instantiated. Part 2
defines the restrictions of the connections involved. There
are four different cases for Part 2. This depending on
whether the Optional connections are defined between (1)
the Optional variation point and a Mandatory component,
(2) two Optional variation points, (3) the Optional variation
point and an OR variation point, and (4) the Optional varia-
tion point and an Alternative variation point. Part 2 involves
applying Rule 2 for cases one and two; and Rule 3 and Rule
4 for case three and case four, respectively. Note that the
clauses also include the case in which an Optional variation
point is not instantiated prescribing theOptional connections
must not be present.

Definition 5.1 Let opConni be an Optional connection of
the SPL architecture between an Optional variation point
opVarPointj and a Mandatory component. The instan-
tiation of the Optional variation point instantiationj

(Part 1) is specified together with such a connection (Part 2)

123

H. A. Duran-Limon et al.

with a necessary condition in the OWL class Root with the
following form:

((instantiationj) and (opConni)) or

(not (instantiationj)and not (opConni))

There are two Optional connections associated with the
Optional variation point vp_area that is instantiated with
c_area in our running example (see Fig. 3). These con-
nections are between c_ui and vp_area and between
vp_area and c_course. As an example, consider the con-
straint for the latter:

((hasC_area some c_area)and
(c_area-IcourseIsNextTo some c_course
−Icourse))
or
(not (hasC_area some c_area)and not
(c_area-IcourseIsNextTo some c_course
−Icourse))

Definition 5.2 Let opConni be an Optional connection of
the SPL architecture between two Optional variation points,
namely opVarPointj and opVarPointj+1. The instan-
tiation of the Optional variation points instantiationj,
instantiationj+1 (Part1) are specified together with
such a connection (Part 2) with a necessary condition in the
OWL class Root with the following form:

((instantiationj) and (instantiationj+1)

and (opConni)) or
(not (instantiationj) or not (insta
ntiationj+1) and
(not (opConni))

Definition 5.3 Let opConni be an Optional connection of
the SPL architecture between an Optional variation point
opVarPointj and an OR variation point. There can be
multiple Optional connections, which we can represent as
opConn1, opConn2, opConn3,..., opConnn. The instan-
tiation of the Optional variation point instantiationj

(Part 1) is specified together with such connections (Part2)
with a necessary condition in the OWL class Root with the
following form:

((instantiationj) and (not (not
(opConn1) and not (opConn2) and not....
and not (opConnn))))

or
(not (instantiationj) and (not
(opConn1) and not (opConn2) and not....
and not (opConnn)))

Definition 5.4 Let opConni be an Optional connection of
the SPL architecture between an Optional variation point
opVarPointj and an Alternative variation point. There
can be multiple Optional connections, which we can repre-
sent as opConn1, opConn2, opConn3,..., opConnn. The
instantiation of the Optional variation point

instantiationj (Part 1) is specified together with such
connections (Part2) with a necessary condition in the OWL
class Root with the following form:

((instantiationj) and ((not
(opConn1) and not (opConn2) and not
(opConn3) and not... and not (opConnn-1)
and opConnn)

or (not (opConn1) and not (opConn2) and
not (opConn3) and not... and (opConnn-1)
and not opConnn)

or (not (opConn1)and not (opConn2)and not

(opConn3) and not... and (opConnn-2) and not
(opConnn-1) and not opConnn)

...
or ((opConn1) and not (opConn2) and not
(opConn3)and not... and not (opConnn-1)
and not (opConnn))))

or
(not (instantiationj) and (not (opConn1)

and not (opConn2) and not.... and not
(opConnn)))

Rule 6. Define requires restrictions in the SPL architecture.
A requires restriction in an SPL architecture takes place
between two or more elements whereby the former requires
the presence of the latter elements. An element can be either
a component or a connector.

Theorem 5 Let P = {a1,a2,...,an} be the elements required
by element e and let Q = {b1,b2,...,bm} be the set of elements
not defined in a product architecture.We associate the logical
rule ruleP with PandthelogicalruleruleQ with Q where:

ruleP ⇒ a1 and a2 and... and an
and ruleQ ⇒ not (b1) and not (b2) and... and

not (bm)
If there exists at least one element ai ∈ P and one element
bj ∈ Q such that bj = ai and as a consequence P ∩ Q �= ∅,
then a requires condition is not met indicating that the prod-
uct architecture is not consistent with the SPL architecture. In
this case, ruleP represents verification Rule 6 and ruleQ rep-
resents a simplification of verification Rule 1 involving only
the set of elements not defined in the product architecture and
omitting any other type of elements.

Proof If we assume that both ruleP and ruleQ are true and
that there exists one element ai ∈ P and one element bj ∈
Q such that bj = ai and as a consequence P ∩ Q �= ∅, then
we have that ruleP ⇒ P ∩ Q = ∅, which is a contradiction,
and therefore, a requires condition is not met.

Definition 5 Let elementi be a required element of the
element elementj of the SPL architecture. There can
be multiple required elements, which we can represent as

123

Verifying consistency of software product line architectures with product architectures

element1, element2, element3,..., elementn. Such
required elements are specified with a necessary condition in
the OWL class of the element elementj with the following
form:

(element1) and (element2) and... and
(elementn)

For example, the following statement specifies the requires
constraint of the component c_single_term (see Fig. 3)
that requires the component c_area as follows:

(hasC_area some c_area)

Rule 7. Define excludes restrictions in the SPL architecture.
An excludes restriction in an SPL architecture takes place
between two or more elements whereby the former excludes
the presence of the latter elements. An element can be either
a component or a connector.

Theorem 6 Let P= {a1,a2,...,an} be the elements excluded by
an element e and let Q = {b1,b2,...,bm} be the set of elements
defined in a product architecture. We associate the logical
rule ruleP with P and the logical rule ruleQ with Q where:

ruleP ⇒ not (a1) and not (a2) and... and not
(an)

and ruleQ ⇒ (b1) and (b2) and.... and (bm)
If there exists at least one element ai ∈P and one element bj
∈Q such that bj = ai and as a consequence P∩Q �= ∅, then
an excludes condition is not met indicating that the product
architecture is not consistent with the SPL architecture. In
this case, ruleP represents verification Rule 7 and ruleQ rep-
resents a simplification of verification Rule 1 involving only
the set of elements that are defined in the product architec-
ture.

Proof Ifwe assume that both ruleP and ruleQ are true and that
there exists at least one element ai ∈ P and one element bj
∈Q such that bj = ai and as a consequence P ∩Q �= ∅, then
we have that ruleP ⇒ P ∩ Q = ∅, which is a contradiction,
and therefore, an excludes condition is not met.

Definition 6 Let elementi be an excluded element of the
element elementj of the SPL architecture. There can
be multiple excluded elements, which we can represent as
element1, element2, element3,..., elementn. Such
excluded elements are specifiedwith a necessary condition in
the OWL class of the element elementj with the following
form:

not (element1)and not (element2)and...
and not (elementn)

For example, the following statement specifies the excludes
constraint of the component c_multiple_term (see
Fig. 3) that excludes the component c_area as follows:

not (hasC_area some c_area)

4.2 Query invalid connections

We employ a query that allows us to detect the presence of
connections not defined in the SPL architecture (see step 2
of Fig. 6).
Query 1. Query the connections present in the Product
architecture that are not part of the SPL architecture. Let
spl_conn be the set of connections defined in the SPL
architecture that represent the set of valid connections and
p_conn be the set of the connections defined in the prod-
uct architecture. This query retrieves the set of invalid
connections {invalid_conn1, invalid_conn2,
invalid_conn3,..., invalid_connn} where
invalid_conni ∈ p_conn and invalid_conni /∈
spl_conn.

An example of this query is presented in the next section.

5 The verification process

The verification process involves two phases. In the first
phase, the Verification Manager employs Query 1 to iden-
tify invalid connections. In the second phase, the Verification
Manager checks whether the populated ontology is inconsis-
tent in order to detect any errors related to Mandatory con-
nections,OR connections, Alternative connections,Optional
connections, and requires/excludes relationships. In case the
populated ontology is inconsistent, the debugging process
takes place. The Reasoning Engine is able to detect when a
populated ontology is inconsistent; however, such an engine
is unable to indicate what is causing the inconsistency. For
instance, the Reasoning Engine is able to detect that there
is an error when a Mandatory connection is missing in the
product architecture. However, the Reasoning Engine does
not provide any clue about the type of error nor the elements
that may be involved in this error. The same happens with
OR connections, Alternative connections, Optional connec-
tions, and requires/excludes relationships. This issue makes
it difficult to find the origin of errors in an inconsistent prod-
uct architecture. In order to tackle this issue we make use
of the Debugger, which, by employing multiple verification
iterations of subsets of the populated ontology can find the
origin of an error. Each verification phase is described further
below.

The verification information presents the connections in
the SPL architecture that have inconsistencies. As men-
tioned earlier, a connection is represented by elementc −
IiIsNextTo some elementd − Ij, where elementc
and elementd are components, and Ii and Ij are their related
interfaces. For example, the following verification result
informs the users that there is an inconsistency with the
connection between the receptacle interface Istudent of

123

H. A. Duran-Limon et al.

the component c_ui and the facet interface also named
Istudent of the component c_student.

(c_ui-IstudentIsNextTo some c_student
-Istudent)

5.1 Identify invalid connections

The Verification Manager employs Query 1 to identify the
connections defined in the product architecture that are
not specified in the SPL architecture. Regarding our run-
ning example, the Verification Manager checks consistency
between the product architecture 1 (Fig. 2a) and the SPL
architecture with errors (Fig. 4). Hence, Query 1 returns the
following invalid connections (i.e., connections in the prod-
uct architecture 1 that are not present in the SPL architecture
with errors):

c_degree-IdegreeOptionIsNextTo some c
_thesis-Ithesis
c_degree-IdegreeOptionIsNextTo some c
_article-Iarticle
c_ui-ItermIsNextTo some c_single_term
-Iterm
c_ui-IcourseIsNextTo some c_course
-Icourse
c_ui-IteacherIsNextTo some c_teacher

-Iteacher
The former represents the connectionbetweenc_degree

and c_thesis. In order to fix this error in the SPL
architecture (Fig. 4), c_degree needs to be connected
to VP_thesis as c_thesis is a variant. The second
case represents the connection between c_degree and
c_article. Similarly, this error can be corrected by con-
necting c_degree to VP_article. The third case is the
connection between c_ui and c_single_term, which
can be fixed by connecting c_ui to VP_term. The fourth
case is the connection between c_ui and c_course, which
can be easily repaired by connecting the former to the latter.
The last case is aMandatory connectionwhose facet interface
is defined as Isubject by the SPL architecture, whereas
the product has Iteacher instead. This is simply rectified
by renaming the facet interface of the SPL architecture to
Iteacher.

5.2 Identify errors withMandatory, OR, Alternative,
andOptional connections, and with
requires/excludes relationships

In case the populated ontology is inconsistent, the fol-
lowing debugging process is carried out. First, the con-
nection patterns of the SPL architecture are identified. In
our running example, we have connection patterns such as
IdegreeOptionIsNextTo, ItermIsNextTo, and
IcourseIsNextTo, among others. Such patterns involve

the receptacle interface that takes place in a connection. In
this way theDebugger can group the set of connections errors
that take place.14

For each connection pattern, i the Debugger constructs a
node E_Debug_step_by_stepi. In case a node is incon-
sistent, the Debugger raises an error showing the connections
involved in such a node. In our running example (see Figs. 2a
and 4), theDebugger identifies the followingMandatory con-
nection error:

1.....c_ui-IteacherIsNextTo some c_te
acher-Isubject

The Debugger identifies that a Mandatory connection is
missing from c_ui to c_teacher (line 1). Although in
the product architecture, there is a connection between c_ui
and c_teacher, the facet interface is named Iteacher
in the product architecture 1 while the name defined in the
SPL architecture with errors is Isubject. This error is also
detected by Query 115. This error was already fixed above.

The Debugger identifies the following OR connection
error:

2.....c_ui-IdegreeOptionIsNextTo some
c_article-Iarticle, c_ui-IdegreeOption
IsNextTo some c_professionalPractice
-IprofessionalPractice, c_ui-Idegree
OptionIsNextTo some c_thesis-Ithesis

There is an OR connection error between c_ui and
the following three variation points (line 2): vp_profe
ssionalPractice, vp_article, and vp_thesis.
In the product architecture 1, c_ui is not connected to
any of the three variants related to these variation points,
namely c_professionalPractice, c_article, or
c_thesis (see Fig. 2a), while at least one connection
should be present according to the SPL architecture with
errors (see Fig. 4). This error can be simply repaired by
removing the OR connection from c_ui in the SPL archi-
tecture (Fig. 4).

In addition, the Debugger identifies the following Alter-
native connection error:

3.....c_degree-ItermIsNextTo some
c_multiple_term-Iterm,
c_degree-ItermIsNextTo some
c_single_term-Iterm

There is an Alternative connection error between the
component c_degree and the variation point vp_term
(line 3). The reason of this error is c_degree is not

14 We assume that each connection between two elements has a dif-
ferent connection pattern. That is, a receptacle interface name must be
a singleton in the SPL architecture, i.e., there cannot be two or more
receptacle interfaces with the same name unless they are connecting
other instances of the same two elements and in the same order.
15 Query 1 only detects invalid connections, but in this case it happened
that this invalid connection (one interface name is not consistent) is also
a Mandatory connection between the two components.

123

Verifying consistency of software product line architectures with product architectures

connected to any variant of this variation point, namely
c_single_term and c_multiple_term (as shown in
Fig. 2a) while the SPL architecture with errors indicates that
c_degree should be connected to one of them (as shown in
Fig. 4). This error can be easily fixed by removing the Alter-
native connection from c_degree in the SPL architecture
(Fig. 4).

The Debugger also identifies the following Optional con-
nection error:

4.....c_area-IsubjectIsNextTo some
c_subject-Isubject

There is an Optional connection error between the
Optional variation point vp_area and the component
c_subject (line 4). Given that the Optional feature Area
was selected, the Optional variation point should be instan-
tiated with the component c_area as well as a connec-
tion between the components c_area and c_subject,
c_area and c_course, and c_ui and c_area but the
connection betweenc_area andc_subject is not present
(as shown in Fig. 2a); however, the latter connection is
included in the SPL architecture with errors (as shown in
Fig. 4). This error can be simply corrected by removing the
Optional connection between vp_area and c_subject
in the SPL architecture (Fig. 4).

Lastly, theDebugger identifies the following requires con-
straint is not met:

5.....hasC_area some c_area
According to the SPL architecture with errors, when the

variant c_single_term is selected, it excludes the variant
c_area to be selected (as shown in Fig. 4). However, in the
product architecture 1 c_single_term is present as well
as c_area (as shown in Fig. 2a). This error can be fixed by
first removing the requires constraint in the SPL architec-
ture (Fig. 4). Then, we need to reverse engineer the correct
requires constraint, if any, from the product architectures and
place it in the SPL architecture.

6 Evaluation

In this section, we describe the evaluation of both the accu-
racy and scalability of our approach. We also present a
discussion of the results and discuss the limitations and
threats to validity of our work.

6.1 Prototype implementation

We used a tool [6] to visually edit both the SPL architec-
ture and the product architecture in PL-Xelha. Regarding the
implementation of the Ontology Factory, we used Acceleo
[33] to transform the PL-Xelha models of the SPL archi-
tecture and product architecture to text in Turtle [34]. The
Turtle syntax is supported by most ontology-based rea-

soning engines and its syntax is less verbose and more
user-friendly than other formats. As mentioned earlier, we
used Pellet [25] as the Reasoning Engine. The Verification
Manager and theDebuggerwere implemented in Java.Lastly,
Query 1 was implemented in Java as part of the Verifica-
tion Manager. As mentioned earlier, the Ontology Factory
is language-dependent (e.g., PL-Xelha requires a different
implementation of this factory from that needed by Koala).
However, the rest of the modules do not have any dependen-
cies on the SPL language employed.

6.2 Accuracy evaluation

We usedmutation testing [35] to evaluate the accuracy of our
verification approach. Mutation testing has been employed
for evaluating the adequacy of test suites [36–38] and also
for guiding the generation of test cases [38–40]. Mutation
testing has also been used to test feature models in a soft-
ware product line [41, 42] as well as a means to generate
test configurations for an SPL [43] and assess the ability of
test suites to detect errors in feature models [44]. Mutants
are software artifacts that have artificial errors injected. Such
artificial errors are called mutations.Mutation operators are
mutation rules used to inject mutations. In case the test suit is
able to detect a mutation (i.e., a test case fails), it is said that
a mutant is killed. Equivalent mutants are those whose func-
tionality is equivalent to the original artifacts. The ratio of
mutants detected by the test cases is called themutation score.
In this paper, the mutation score represents the accuracy of
our verifier to detect errors.We calculated the mutation score
as follows:
m_score = mutants_killed / (mutants
- e_mutants) * 100
where m_score is the mutation score, mutants_killed
are the number of mutants killed, mutants are the num-
ber of selected mutants, and e_mutants are the number of
equivalent mutants. Equivalent mutants are subtracted from
the number of mutants since equivalent mutants are not able
to produce errors.

We employed mutation testing to systematically derive
test cases for our running example.16 Based on the test
cases generated, we evaluated the ability of our verifica-
tion approach to detect inconsistencies between an SPL
architecture and a product architecture. We achieved this by
conducting the following steps:

16 The number of product architectures of the SPL architecture
employed by the evaluation is 15. This given that our running example
was extended with an Optional connection between the Optional com-
ponent vp_term and theOptional component vp_area (seemutation
operators 24 and 28).

123

H. A. Duran-Limon et al.

1. Define mutation operators. In order to define mutation
operators, we identified what can be changed in an SPL
architecture. These operators were defined based on the
operations add, remove, and change, which are the basic
operations needed to introduce changes. Thenwe applied
these operations to the different elements of an SPL
architecture such as Mandatory component, Optional
component, OR group, and Alternative group. A partial
list of themutation operators we applied to the SPL archi-
tecture of our running example (see Fig. 3) is presented
in Table 1. The full list of the mutation operators is given
in “Appendix A” in Table 7.

2. Generate the mutants.Wemanually applied the mutation
operators to the SPL architecture of our running example
to obtain the mutants. The generated mutants are SPL
architectures with changes introduced.

3. Generate test cases. We generated a test case for each
mutant. Thus, a test case is a product architecture that
is consistent with a mutant (i.e., a modified SPL archi-
tecture). There may be multiple test cases associated
with a single mutant. Some of these test cases could be
mutant killers and someothers could benot.We randomly
selected only one mutant killer.

4. Evaluate the verifier with the test cases. The steps to
evaluate the verifier are as follows. First, we verify the
test cases against themutants where no verification errors
should be raised. Contrarily, the test case is erroneous
and must be corrected until no errors are detected by the
verifier. Second, the test cases are verified with respect
to the original SPL architecture of the running example.
In this case, it is expected that the verifier detects one or
more errors related to the changesmade by the associated
mutation operator.

The results of the mutation testing are shown in Table 2.
The first column shows the total number of mutants that
can be produced by applying each mutation operator. The
second column presents the number of mutants that were
actually generated. For example, in the case of the opera-
tor “12. Change the instantiation relationship of an Optional
component,” there are 30possiblemutants.However,weonly
generated 20% of them (i.e., 6) to reduce the effort of manu-
ally generating them. We also selected 20% or higher of the
mutants in the case of the operators 17, 18, 19, 20, 31, and
33. It has been shown elsewhere [45] that randomly select-
ing 20% of the mutants results in a fault loss of only about
16%. The percentage of selected mutants is shown in the
third column. Then, the fourth column shows the cases when
a mutant is killed. This happens when a test case fails, as
earlier mentioned. Lastly, the fifth column shows the equiv-
alent mutants, which are those mutants that are equivalent
to the original SPL. All the mutants generated by the oper-
ators 6, 7, 10, and 11 are equivalent mutants. In the case

of operator 8, only one mutant out of five is mutant equiv-
alent. In the case of operator 12, there are two mutants out
of six that are mutant equivalent. We obtained 116 mutants
killed, which is exactly the same number that results from
subtracting the number of equivalent mutants (i.e., 14) to
the number of selected mutants (i.e., 130). As a result, our
verifier obtained a mutation score of 100%.

6.3 Scalability evaluation

We carried out a number of experiments to test the scalability
of our approach. Each experiment was repeated 30 times and
the average execution time of these runs was considered.

We carried out our experiments on aMacBook Pro Retina
Intel Core i7 at 2.5 GHz with 6 MB of L3 cache memory
and 16 GB of RAM running Mac OS X, version 10.13.2.
The scalability of the prototype was evaluated for different
sizes of SPL architectures. In our experiment, we tested the
scalability of the Ontology Factory, Verification Manager,
and Debugger. The Reasoning Engine was indirectly tested
by the latter two as these modules perform queries over the
ontologies.

In order to test the scalability of our framework, we imple-
mented a Java program in charge of generating random SPL
architectures. We chose using random architectures as no
industrial SPL architectures are freely available andwith ran-
dom architectures we have more flexibility to decide the size
of the SPL architecture to test. This program also gener-
ates a set of product architectures for each SPL architecture
that corresponds to a number of random selections from the
set of valid configurations. Errors were randomly introduced
in the generated product architectures, which consisted of
removing an arbitrary Mandatory connection and an arbi-
trary Alternative connection from the product architectures.
In this way, the Debugger was forced to check the validity of
Mandatory, OR, and Alternative connections.

In addition, the architecture generator program can pro-
duce SPL architectures of different sizes that follow a
proportion similar to our running example and involves the
same number of Alternative variation points as the number
of Mandatory elements and requires/excludes relationships
altogether. Such relationships are approximately the fifth part
of Mandatory elements. There are twice as many OR vari-
ation points as there are Alternative variation points and
there are two to seven variants associated with each vari-
ation point (the specific number of variants was randomly
selected). Alternative variation points were connected con-
secutively in line (one to another) in order to test the worst
case scenario (i.e., a casewith higher computing complexity).
This is because Rule 3 statements grow exponentially as the
number of variants increases; hence, scalability is affected
accordingly (see below).

123

Verifying consistency of software product line architectures with product architectures

Table 1 Partial list of mutation operators

Operator Example

1. Remove a Mandatory component Remove the Mandatory component c_student from the SPL architecture

2. Change a Mandatory component Convert the Mandatory component c_student to an Optional

to an Optional component component in the SPL architecture

3. Change the name of a The name of the Mandatory component

Mandatory component c_student is changed to c_studentV2

4. Add an Optional component to The Optional component vp_area is disconnected from c_ui and connected

an OR group to the receptacle IdegreeOption of the component c_degree as another degree option

5. Add an Optional component to The Optional component vp_area is removed and its associated variant c_area is

an Alternative group added as an alternative of the Optional component vp_term

6. Remove an Optional component Remove both the Optional component vp_thesis and its associated variant

from an OR group c_thesis from the OR group in the SPL architecture

7. Remove an Optional component The variant c_single_term is removed from the Alternative group in the SPL

from an Alternative group architecture

8. Remove an Optional component Remove both the variation point vp_area and its associated variant c_area

and its associated variants from the SPL architecture

9. Change the name of a variant Change the name of the variant c_thesis by c_thesisV2

10. Change an Optional component The Optional component vp_area and its associated variant c_area are transformed to

to a Mandatory component a Mandatory component and the requires/excludes relationships are eliminated

11. Change the name of an The name of the variant c_area is changed to c_areaV2. Another

Optional component example is changing the variant c_thesis to c_thesisV2

12. Change the instantiation The variants c_thesis and c_article are interchanged so that now they instantiate

relationship of an Optional comp the Optional components vp_article and vp_thesis, respectively

13. Remove an OR group The Optional components vp_professionalPractice, vp_article

relationship and vp_thesis are removed along with their associated variants c_professionalPractice

c_article, and c_thesis

14. Change OR group relationship The OR group relationship of our running example is transformed to an Alternative

to Alternative group relationship group relationship

15. Remove an Alternative group The Optional component vp_term is removed along with its variants

relationship c_single_term and c_multiple_term

16. Change Alternative group The Alternative group relationship of our running example is transformed to an OR

relationship to OR group relation group relationship

17. Add a connection between two A receptacle of the component c_student is connected to a facet of the component

Mandatory components c_degree

18. Add a connection between a A receptacle of the component c_course is connected to a facet of the Optional

Mandatory component and an component vp_area

Optional component

19. Add a connection between an Connect a receptacle of the Optional component

Optional component and a vp_area to the facet of the component

Mandatory component c_course

20. Add a connection between two Connect a receptacle of the Optional component vp_area to a facet of the Optional

Optional components component vp_term

21. Remove a connection between The connection between the components c_ui and c_course is removed

two Mandatory components

22. Remove a connection between The connection between the component c_ui and the Optional component vp_area

a Mandatory comp and Op comp is removed

123

H. A. Duran-Limon et al.

Table 1 continued

Operator Example

23. Remove connection between Op The Optional connection between the Optional component vp_area and the

comp and a Mandatory comp component c_course is removed

24. Remove a connection between Given that our running example does not count with such a type of connection

two Optional components we added an Optional connection between the Optional component vp_term

and the Optional component vp_area, and we considered this as the original SPL

architecture for testing the operator. Then, after applying this operator, this

connection is removed to obtain the mutant

25. Change the connection of a The receptacles Isubject and Icourse of the component c_ui

Mandatory receptacle with another are connected to the facets Icourse and Isubject, respectively

Mandatory receptacle

The experiments we carried out involved different sce-
narios, whose details are presented below. In scenario 1, we
tested the scalability of our approach. In Table 3, we show the
number of architecture elements we used.We can see that the
experiments in this scenario involve SPL architectures start-
ing with 57 architecture elements up to 285 elements. The
scalability behavior of the Ontology Factory is almost lin-
ear as shown in Fig. 8. Figure9 shows that the performance
degradation of the Verification Manager increases in a linear
way demanding up to 10 s for 285 elements. However, the
performance of theDebugger degrades exponentially asmore
elements are included in the SPL architecture demanding up
to 463 s for 285 elements, as shown in Fig. 10.

Given that we found that the Debugger degrades rapidly
we adopted an strategy that allowed our approach to handle
larger architectures. This strategy involves making sub-
partitions of the SPL architectures together with their asso-
ciated product architectures into smaller sub-architectures.
We generated such sub-architectures manually. We con-
sidered two constraints for maintaining the verification of
partitioned architectures consistent. First, it was considered
that two adjacent sub-architectures cross-cut each other to
avoid loosing information,where the second sub-architecture
includes as its first element the last element of the first sub-
architecture. Such an element can be a variation point, a
component, or a connector, in the case of an SPL architec-
ture. In the case of the product architecture, this element can
be a component or a connector. Second, component and con-
nector connections cannot cross-cut two sub-architectures.
In addition, the maximum size of the sub-architectures was
set by determining the average rate of change of the perfor-
mance degradation. We calculate the average rate of change
by dividing the change in the execution time by the change
in the number of architecture elements. We defined a maxi-
mum rate of change of around one in order to keep a linear
performance degradation when the size of the SPL archi-
tecture scales up. A rate of change greater than one means

that the execution time grows more rapidly than the num-
ber of architecture elements. We found, in the case of our
testbed platform, that SPL sub-architectures of up to 216
were suitable. This because as a base line we had 62 ele-
ments which took 13.70 s. Then we got the average rate of
change of the base line with respect to different amounts of
elements. We obtained an average rate of change of 0.697
for 216 elements. The rate of change was larger than one for
larger sub-architectures.

Therefore, in scenario 2, we employed the partitioning
strategy to test the scalability of our approach with larger
architectures. In Table 4 we show the number of architec-
ture elements we used for this scenario, which ranges from
1026 elements to 5016 elements; and we considered a vary-
ing number of requires/excludes relationships, Mandatory
elements, variation points, and variants ranging from 9 to 44,
45 to 220, 162 to 792, and 810 to 3960, respectively. We
can see that the Ontology Factory, the Verification Manager,
and even the Debugger exhibit a linear scalability behavior in
scenario 2, as depicted in Figs. 11, 12, and 13, respectively. In
the case of the Debugger experiments (Fig. 13), we reduced
the number of repetitions to five given that in some cases
each execution took around one hour. Based on the central
limit theorem and given that in this experiment scenario the
sampling distribution was nearly normal, we considered the
sample size (i.e., five runs) to be large enough.

In scenario 3, we tested how the performance of the
Debugger degraded for two Alternative variation points
(VPs) interconnected and a Mandatory component con-
nected to one of the VPs when the amount of variants
increases. We performed this test given that the computa-
tional complexity of Rule 3 statements, which define the
restrictions for Alternative connections, grows exponentially
as the number of variants increases, specially when two
Alternative VPs are interconnected. We focused only on the
degradation of the Debugger since it suffers a much higher
degradation than both the Ontology Factory and the Verifi-

123

Verifying consistency of software product line architectures with product architectures

Table 2 Results of mutation testing

Operator Mutants Selected % Selected Mutants Equivalent
Mutants Mutants Killed Mutants

1. Remove a Mandatory component 6 6 100 6 0

2. Change a Mandatory comp to an Optional comp 6 6 100 6 0

3. Change the name of a Mandatory component 6 6 100 6 0

4. Add an Optional component to an OR group 3 3 100 3 0

5. Add an Optional component to an Alternative group 1 1 100 1 0

6. Remove an Optional component from an OR group 3 3 100 0 3

7. Remove an Optional comp from an Altern group 2 2 100 0 2

8. Remove an Optional comp and its assoc variants 5 5 100 4 1

9. Change an Optional comp to a Mandatory comp 6 6 100 6 0

10. Change an Optional comp to a Mandatory comp 1 1 100 0 1

11. Change the name of an Optional component 5 5 100 0 5

12. Change the instantiation relationship of an

Optional component 30 6 20 4 2

13. Remove an OR group relationship 1 1 100 1 0

14. Change an OR group relationship to an

Alternative group relationship 1 1 100 1 0

15. Remove an Alternative group relationship 1 1 100 1 0

16. Change an Alternative group relationship

to an OR group relationship 1 1 100 1 0

17. Add a connection between two Mandatory comp 24 5 20.83 5 0

18. Add a connection between a Mandatory comp

and an Optional component 27 6 22.22 6 0

19. Add a connection between an Optional comp

and a Mandatory component 25 5 20 5 0

20. Add a connection between two Optional comp 20 4 20 4 0

21. Remove a connection between two Mandatory comp 6 6 100 6 0

22. Remove a connection between a Mandatory comp

and an Optional component 1 1 100 1 0

23. Remove a connection between an Optional comp

and a Mandatory component 1 1 100 1 0

24. Remove a connection between two Optional comp 1 1 100 1 0

25. Change the connection of a Mandatory receptacle

with another Mandatory receptacle 5 5 100 5 0

26. Change the connection direction between two

Mandatory components 6 6 100 6 0

27. Change the connection direction between a

Mandatory component and an Optional component 5 5 100 5 0

28. Change the connection direction between two

Optional components 1 1 100 1 0

29. Change the name of a receptacle interface 8 8 100 8 0

30. Change the name of a facet interface 8 8 100 8 0

31. Add a requires relationship 27 6 22.22 6 0

32. Remove a requires relationship 1 1 100 1 0

33. Add an excludes relationship 27 6 22.22 6 0

34. Remove an excludes relationship 1 1 100 1 0

Total 272 130 – 116 14

123

H. A. Duran-Limon et al.

Table 3 Number of architecture
elements in Scenario 1

Requires/excludes relationships Mandatory OR VPs Alternat. VPs Variants Total

0 3 6 3 45 57

1 5 12 6 90 114

1 8 18 9 135 171

2 10 24 12 180 228

2 13 30 15 225 285

Table 4 Size of SPL
architectures in Scenario 2

Requires/excludes relationships Mandatory OR VPs Alternat. VPs Variants Total

9 45 108 54 810 1026

17 88 210 105 1575 1995

26 133 318 159 2385 3021

35 178 426 213 3195 4047

44 220 528 264 3960 5016

Fig. 8 Scenario 1, scalability of the Ontology Factory

cation Manager, as shown in scenario 1. Table 5 depicts the
performance of theDebugger degrades rapidly as the number
of variants increases. In this case, we also reduced the num-
ber of repetitions to five given that in the case of 30 variants
each execution took more than one hour. We obtained the
average rate of change of the base line with respect to differ-
ent amounts of variants. As a base line, we took the first row
of the table. In addition, we tested the performance degrada-
tion of the Debugger for aMandatory component connected
to an OR variation point. Table 6 shows that in this case, a
higher number of variants can be handled by the Debugger.

6.4 Discussion

The accuracy evaluation results have shown that our verifier
has a high accuracy for detecting errors in product archi-
tectures (i.e., elements in a product architecture that are not
consistent with an SPL architecture). We defined 34 mutant
operators and evaluated 130 mutants (i.e., 130 modified
SPLs) where 116 mutants were killed and 14 mutants were
mutant equivalent. Our accuracy evaluation obtained a muta-
tion score of 100%, which indicates that all errors in the test

Fig. 9 Scenario 1, scalability of the Verification Manager

Fig. 10 Scenario 1, scalability of the Debugger

cases were correctly detected and the sources of errors were
correctly identified by the Debugger. The verifier was unable
to detect errors only in the cases the mutants were mutant
equivalent. This is the expected behavior of the verifier since
the products of a mutant equivalent are consistent with the
original SPL. This was the case of removing a component
from an OR group (operator 6), removing a component from
an Alternative group (operator 7), or changing the name of
an Optional component (operator 11), which only shrink the
configuration space but do not generate test cases with errors.

123

Verifying consistency of software product line architectures with product architectures

Fig. 11 Scenario 2, scalability of the Ontology Factory

Fig. 12 Scenario 2, scalability of the Verification Manager

Fig. 13 Scenario 2, scalability of the Debugger

As an example, consider the mutant operator “7. Remove an
Optional component from an Alternative group” that gener-
ates mutants that are mutant equivalent. In case we apply this
operator and remove the variant c_single_term from the
SPL, all products of the mutant will still be consistent with
the original SPL. On the other hand, the selected variants
of a product configuration that are not directly related to
the change of a mutant do not affect the verification result.
Therefore, we did not create all possible test cases, rather,
we randomly selected a test case that is directly related to the
change made to the mutant; this to make sure that this test
case is amutant killer. For instance, operator 2 regards chang-
ing aMandatory component to an optional component such

Table 5 Scenario 3a. Scalability of the Debugger for two Alternative
VPs interconnected

Variants per Alternative VPExecution Time (s)Average Rate of Change

10 3.12 –

12 5.28 1.07

15 21.51 3.67

20 86.36 8.32

25 286.08 18.86

30 792.46 39.46

Table 6 Scenario 3b. Scalability of the Debugger for an OR VP con-
nected to a Mandatory Component

Variants per OR VP Execution time (s) Average rate of change

100 1.92 –

200 5.51 0.03

300 10.42 0.04

400 16.78 0.04

500 26.32 0.06

as converting theMandatory component c_student to an
optional component. In this case, we select a product that
does not include c_student for it to be a mutant killer. In
other cases, all products aremutant killers. For example oper-
ator 15 involves removing an Alternative group relationship.
In this case, all products of the mutant are mutant killers.
This is because in all products both connections c_ui to
c_single_term and c_ui to c_multiple_term are
missing.Nevertheless, the important point is finding amutant
killer and not every possible mutant killer. This is because
one mutant killer is enough to test the same type of point of
failure.

Regarding the scalability evaluation, the first scenario is
useful to find out the maximum number of architectural
elements our approach is able to handle on a particular
hardware platform without degrading by partitioning it into
sub-architectures, where each sub-architecture does not sur-
pass such a number. The second scenario shows that the
partition approach is useful to keep the linear performance
behavior. The third scenario helps us to find out the max-
imum number of variants an Alternative variation point is
able to handle on a particular hardware platform. We can
observe that in both scenario 1 and scenario 2 the Debugger
takesmuchmore time to execute than both the Ontology Fac-
tory and the Verification Manager. The experimental results
in scenario 1 show that the Debugger does not scale well
for SPL architectures that include more than 225 elements.
The expressiveness obtainedbydescription logics is achieved
at the expense of higher computational complexity that is
present in current ontology reasoning engines [46]. This issue

123

H. A. Duran-Limon et al.

is exacerbated by the fact that theDebugger employsmultiple
queries and consistency checks in the debugging process. The
Debugger employs a consistency check for each component
connection pattern in the SPL architecture.We addressed this
scalability issue by using a partitioning strategy, whereby we
partition large SPL architectures and product architectures
into small sub-architectures. We have shown that by using
this partitioning strategy, the scalability of our framework
is linear. For instance, in the case of an SPL architecture
of 1026 elements, the Debugger takes 603 s, whereas in the
larger case with an SPL of 5016 elements the Debugger takes
3525 s.

The third scenario shows that Alternative variation points
face scalability problems. The restrictions of Alternative
elements are defined according to Rule 3. The scalability
problems are due to the fact that restrictions of n Alterna-
tive connections require n statements each one involving
n terms to define an Alternative variation point restriction;
hence, the number of terms needed is n2. In the case of inter-
connecting an Alternativevariationpointvp1 to a variation
point vp2, where vp2 is either another Alternative variation
point or an OR variation point whereby vp1 and vp2 have
n and m variants, respectively, we have n*m possible con-
nections. Therefore, restrictions of Alternative connections
require n*m statements, where each statement involves m
terms; hence, the total number of terms needed is n*m2. In
order to avoid scalability problems we suggest that those
Alternative variation points that are connected to another
variation point be partitioned into a sub-architecture when
the number of variants of the Alternative variation point has
an average rate of change considerably higher than 1, which
in our platform happens from 15 variants (see Table 5). Then,
we suggest limiting the maximum number of variants asso-
ciated with an Alternative variation to the point where the
Debugger exhibits a rate that is close to one (which in our plat-
form happens to be around 12 variants as shown in Table 5).
Although our approach is able to handle only a short number
of variants ofAlternative variation points, OntoPAV is able to
mange a larger number of variants in the case of aMandatory
component connected to anOR variation point. Furthermore,
our approach can still be useful for small- and somemedium-
scale SPL architectures involving a short number of variants
per Alternative variation points. In addition, the validity of
the verification rules is shown with the theorems presented
in Sect. 4. Such theorems validate the verification rules car-
ried out by our framework for Mandatory, OR, Alternative,
and Optional connections as well as for requires/excludes
relationships.

Finally, it should be noted that simply using proposi-
tional formulas is not enough to validate the component
interconnections of a product architecture are consistent
with the component interconnections of an SPL archi-
tecture. Component interconnections involve relationships

among component interfaces. However, our ontology-based
approach has more expressive power to define and validate
such relationships.

6.5 Limitations and threats to validity

Our work has a number of limitations. The process of
manually partition both an SPL architecture and a product
architecture can be a complex and error-prone task. Automat-
ing such a process is not addressed by this paper and is
regarded as future work. Our proposal is able to handle a
large number of variants for OR variation points; however,
this is not the case of Alternative variation points that can
only support a short number of variants. Future work will
look into improving the performance of OntoPAV for Alter-
native variation points involving a larger number of variants.
Although the Debugger is able to find the origin of errors,
it does not allow us to make fixes on the fly. Further work
is required to have a fully automated debugging process. As
we have only addressed the verification of component inter-
connections, further work is required to include support for
quality of service (QoS) aspects. Although our framework
supports requires and excludes constraints, it does not support
complex constraints [47] involving arbitrary propositional
formulas. Nevertheless, it is feasible to extend our frame-
work to support complex constraints given that arbitrary
propositional formulas can be easily handled by descrip-
tion logic (DL) [31], which is employed by our framework.
This is because description logic is more expressive than
propositional logic. Such an extension to our framework con-
cerns future work. In addition, our proposal does not support
constraints with numerical features that require arithmetical
operations. Incorporating these kinds of constraints is not
straightforward and, thus, requires further work.

Next, we discuss the validity threats that could affect the
evaluation results. In the case of threats to internal validity,
the results of the accuracy evaluation could be affected by a
bias in the selection of the test cases assessed.We reduced this
threat by using mutation testing, which allowed us to guide
the generation of test cases to cover a wide range of points
of failure. Regarding the results of the scalability evaluation,
there are various factors that can have an impact on the exe-
cution time of our system prototype such as the load imposed
by operating system processes and other processes running
on the machine. We repeated 30 times each experiment in
order to reduce this threat.17

Threats to external validity are related to the fact that the
artifacts evaluated may not reflect real world SPL architec-
tures. In the case of the results of the accuracy evaluation,
we improved external validity by using a test case, i.e., an

17 The repetitions were reduced to five times only when the Debugger
degraded rapidly.

123

Verifying consistency of software product line architectures with product architectures

SPL architecture, that includes all the types of connections
checked by our verifier, namely Mandatory, OR, Alterna-
tive, and Optional connections as well as requires/excludes
relationships. This threat was also diminished by testing all
the mutation operators we defined. For this purpose, it was
necessary to extend the SPL architecture in order to test the
mutation operators 24 and 28 that were not covered by the
original SPL architecture (see description of operators 24 and
28 in Sect 6.2). Regarding the results of the scalability evalu-
ation, both the SPL and product architectures were randomly
generated in our experiments. This fact is a threat to exter-
nal validity given that these architectures may not reflect real
world SPL and product architectures. The factors that impact
scalability are the number of requires/excludes relationships,
Mandatory elements (i.e., components and connectors) as
well as the number of variation points (i.e., optional compo-
nents and optional connectors) and variants that are included
in the SPL architecture. Hence, we reduced this threat by
considering a varying number of requires/excludes relation-
ships, Mandatory elements, variation points, and variants
ranging from 9 to 44, 45 to 220, 162 to 792, and 810 to 3960,
respectively (see Table 4). The total number of architecture
elements that we considered in our experiments were 1026,
1995, 3021, 4047, and5016 (seeTable 4).Wealso diminished
this threat by considering worst case scenarios. For example,
both scenario 1 and scenario 2 consider SPL architectures, in
which Alternative variation points were connected consecu-
tively in line (one to another). This can cause that terms of
Rule 3 grow exponentially, as previously discussed. Lastly,
scenario 3 tested the scalability problems faced by Alterna-
tive variation points when associated with a larger number of
variants.

7 Related work

Several works have been carried to address SPL reverse engi-
neering, some of them focus on feature models such as [48].
However, the majority of them have focused at the source
code level [49]. A more generic approach [12] presents a
unified framework to help the adoption of SPLs from legacy
systems. The authors’ approach enables feature identifica-
tion along with their constraints and the generation of new
products. The proposed framework enables the possibility of
adapting it to different artifact types and algorithms. Rubin
et al. [13] propose a development framework that guides the
process of reengineering anSPLarchitecture in termsof com-
ponents and their connections.However, theSPLarchitecture
extraction process has to be carried out manually. A few
efforts have been done to reverse engineer UML models of
software architecture product lines. For example, Assunção
et al. [11] propose an approach to automatically extract
UML class diagrams with features annotations. UML class

diagrams are indeed useful for the design of SPL architec-
tures. Nevertheless, ADL-based designs complement class
diagrams with a higher level of abstraction making it eas-
ier to reason about the architecture and communicating the
design choices among stakeholders. However, to the best of
our knowledge, currently there are not approaches able to
automatically extract ADL-based SPL architectures, hence
making it necessary to do it manually.

A related problem to SPL extraction from legacy products
involves the coevolution between SPLs and products where
the SPL needs to be extracted or merged to make it consis-
tent with changes introduced separately in the products. For
instance, Schulze et al. [50, 51] propose a method to ensure
consistency among artifacts whereby the initial version of a
product, the modified version of a product within the SPL,
and the modified version within the application domain are
merged to a consistent version. This process can be useful
for future efforts targeting software architecture artifacts.

Several efforts have been carried out to achieve ver-
ification of feature models [4, 14–18, 32, 52–60];these
approaches commonly identify whether a feature model rep-
resents at least one product and whether the model contains
any errors such as contradictory feature relationships.Anum-
ber of works have used an ontology-based approach to verify
feature models [14, 32, 53, 55]. In [14] a predicate-based
ontology language is used for modeling and formalizing fea-
ture models, and consistency is checked with Prolog. Guo et
al. [53] propose an ontology-based formalization of feature
models. In this work, changes in the model can be verified
for consistency by employing a dependency matrix. Other
ontology-based efforts have used description logic to ver-
ify the consistency of feature models [32, 55]. In our work,
we follow an ontology-based approach similar to Wang et
al. [32]; however, we focus on verifying consistency of
product architectures rather than feature models. Verifying
consistency of SPL architectures has received some atten-
tion [19, 24]. Czarnecki et al. define an approach to verify
thewell-formedness of anSPLarchitecture (i.e., an annotated
model) by using OCL constraints. The approach ensures that
a well-formed SPL architecture will derive in well-formed
product architectures (i.e., template instances) for any valid
feature configuration. For this purpose, the user has to man-
ually define OCL constraints. In this approach, the authors
assume the product architecture can be easily derived by a
Template Preprocessor by simply removing those elements
whose presence conditions, in the SPL architecture, evaluate
to false. Also, the solution of our previous work allows for
automating the generation of the product architectures [6] by
defining the SPL in and ADL and providing the feature tree
selections. However, none of these works helps to ensure that
a reverse engineered SPL architecture is consistent with a set
of legacy product architectures. One challenging problem is
verifying a product architecture maintains consistency when

123

H. A. Duran-Limon et al.

it is derived fromdependent product lines (aka.multi-product
lines [61]); this given that an evolution of an artifact in one
product line can introduce inconsistencies in the product
architectures of the other product lines. In [24], multi-view
models with variability are checked for consistency. Other
work considers verifying the consistency of SPL implemen-
tations [20]. More specifically, this approach verifies the
programs are type safe, i.e., absence of references to unde-
fined elements such as classes and variables. Thüm et al.
[62] and Kästner et al. [63] provide an approach to verify at
the implementation level the composition of multiple prod-
uct lines. Other efforts check the consistency between the
SPL architecture and the feature model [21]. Janota et al.
[64] and van der Storm et al. [65] present an approach that
verifies the mappings between feature and component archi-
tecturemodels.Asadi et al. [16] propose an approach todetect
inconsistencies between goal models and feature models.
However, only a few approaches have addressed the issue
of checking consistency between the product architecture
and the SPL architecture, but mainly focusing on behavioral
aspects [22, 23]. Therefore, approaches are still missing for
verifying structural aspects of the commonality and variabil-
ity of a manually extracted SPL architecture with respect to
the product architectures from which it is derived.

8 Conclusion

In this paper, we have presented the OntoPAV framework,
an approach to verify consistency of component intercon-
nection aspects between a product architecture of a legacy
system and a reverse engineered SPL architecture.We rely on
the use of ontologies to perform such a verification. Impor-
tantly, the user does not need to have skills on ontologies
to use our approach, rather, we make use of model-driven

techniques to automate the populated ontology generation
process.We illustrated our approach via a motivating scholar
system example that shows the validity of our solution. Our
evaluation results show that our verifier has a high accuracy
in detecting consistency errors between product architec-
tures and an SPL architecture. Lastly, we have shown that
by employing a partitioning strategy our framework is able
to achieve a linear performance scalability for small- and, in
some cases, medium-scale approaches.

Future work regards automating the process of partition-
ing SPL and product architectures. We will also look into the
issue of improving the performance of our approach when
handling Alternative variation points. Future improvements
of our work also include extending OntoPAV to support not
only the verification of consistency at the architecture level,
but also at finer granularity levels (e.g., a code block [66]).
We believe the preliminary results of our accuracy evalu-
ation are encouraging and it is regarded as a future work
using a synthetic data set to strengthen the accuracy evalu-
ation. Finally, we will explore using our approach to verify
changes introduced at runtime to SPLs.

Acknowledgements Thiswork has beenpartially supported by theUni-
versidad de Guadalajara under the PROSNI program.

Appendix A

See Table 7.

123

Verifying consistency of software product line architectures with product architectures

Table 7 Full list of mutation operators

Operator Example

1. Remove a Mandatory component Remove the Mandatory component c_student from the SPL architecture

2. Change a Mandatory component Convert the Mandatory component c_student to an Optional

to an Optional component component in the SPL architecture

3. Change the name of a The name of the Mandatory component

Mandatory component c_student is changed to c_studentV2

4. Add an Optional component to The Optional component vp_area is disconnected from c_ui and connected

an OR group to the receptacle IdegreeOption of the component c_degree as another degree option

5. Add an Optional component to The Optional component vp_area is removed and its associated variant c_area is

an Alternative group added as an alternative of the Optional component vp_term

6. Remove an Optional component Remove both the Optional component vp_thesis and its associated variant

from an OR group c_thesis from the OR group in the SPL architecture

7. Remove an Optional component The variant c_single_term is removed from the Alternative group in the SPL

from an Alternative group architecture

8. Remove an Optional component Remove both the variation point vp_area and its associated variant c_area

and its associated variants from the SPL architecture

9. Change the name of a variant Change the name of the variant c_thesis by c_thesisV2

10. Change an Optional component The Optional component vp_area and its associated variant c_area are transformed to

to a Mandatory component a Mandatory component and the requires/excludes relationships are eliminated

11. Change the name of an The name of the variant c_area is changed to c_areaV2. Another

Optional component example is changing the variant c_thesis to c_thesisV2

12. Change the instantiation The variants c_thesis and c_article are interchanged so that now they instantiate

relationship of an Optional comp the Optional components vp_article and vp_thesis, respectively

13. Remove an OR group The Optional components vp_professionalPractice, vp_article,

relationship and vp_thesis are removed along with their associated variants c_professionalPractice,

c_article, and c_thesis

14. Change OR group relationship The OR group relationship of our running example is transformed to an Alternative

to Alternative group relationship group relationship

15. Remove an Alternative group The Optional component vp_term is removed along with its variants

relationship c_single_term and c_multiple_term

16. Change Alternative group The Alternative group relationship of our running example is transformed to an OR

relationship to OR group relation group relationship

17. Add a connection between two A receptacle of the component c_student is connected to a facet of the component

Mandatory components c_degree

18. Add a connection between a A receptacle of the component c_course is connected to a facet of the Optional

Mandatory component and an component vp_area

Optional component

19. Add a connection between an Connect a receptacle of the Optional component

Optional component and a vp_area to the facet of the component

Mandatory component c_course

20. Add a connection between two Connect a receptacle of the Optional component vp_area to a facet of the Optional

Optional components component vp_term

21. Remove a connection between The connection between the components c_ui and c_course is removed

two Mandatory components

22. Remove a connection between The connection between the component c_ui and the Optional component vp_area

123

H. A. Duran-Limon et al.

Table 7 continued

Operator Example

a Mandatory comp and Op comp is removed

23. Remove connection between Op The Optional connection between the Optional component vp_area and the

comp and a Mandatory comp component c_course is removed

24. Remove a connection between Given that our running example does not count with such a type of connection,

two Optional components we added an Optional connection between the Optional component vp_term

and the Optional component vp_area, and we considered this as the original SPL

architecture for testing the operator. Then, after applying this operator, this

connection is removed to obtain the mutant.

25. Change the connection of a The receptacles Isubject and Icourse of the component c_ui

Mandatory receptacle with another are connected to the facets Icourse and Isubject, respectively

Mandatory receptacle

26. Change the connection direction The connection between the components c_ui and c_course is changed so that a

between two Mandatory comp receptacle of the component c_course is now connected to a facet of the component c_ui

27. Change the connection direction Change the connection between the component c_ui and the Optional component

between a Mandatory component vp_area so that a receptacle of vp_area is connected to a facet of c_ui

and an Optional component

28. Change the connection direction Given that our running example does not count with such a type of connection, we

between two Optional components added an Optional connection between the Optional component vp_term

and the Optional component vp_area (see operator 24).

29. Change the name of a The name of the receptacle Icourse is changed to IcourseV2

receptacle interface

30. Change the name of a facet The name of the facet Isubject is changed to IsubjectV2

interface

31. Add a requires relationship We add a requires relationship from variant c_thesis to variant c_single_term

32. Remove a requires relationship The requires relationship from variant c_single_term to the variant c_area is removed

33. Add an excludes relationship We add an excludes relationship from variant c_thesis to the variant c_single_term

34. Remove an excludes relationship The excludes relationship from variant c_multiple_term to the variant c_area is removed

References

1. Krueger, C.W.: New methods in software product line practice.
Commun. ACM 49, 37–40 (2006)

2. Weiss, D.M., Clements, P.C., Kang, K., Krueger, C.: Software
product line hall of fame. In: 10th International Software Prod-
uct Line Conference (SPLC’06), 2006, pp. 237–237. https://doi.
org/10.1109/SPLINE.2006.1691614

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Tech. Rep.
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University (1990)

4. Batory, D.: Featuremodels, grammars, and propositional formulas.
In: Proceedings of the 9th International Conference on Software
Product Lines, SPLC’05, Springer-Verlag, Berlin, pp. 7–20 (2005)

5. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The
koala component model for consumer electronics software. Com-
puter 33(3), 78–85 (2000)

6. Duran-Limon, H.A., Garcia-Rios, C.A., Castillo-Barrera, F.E.,
Capilla, R.: An ontology-based product architecture derivation
approach. IEEE Trans. Softw. Eng. 41(12), 1153–1168 (2015)

7. Medvidovic, N., Taylor, R.N.: A classification and comparison
framework for software architecture description languages. IEEE
Trans. Softw. Eng. 26, 70–93 (2000)

8. Li, Y., Schulze, S., Scherrebeck, H.H., Fogdal, T.S.: Automated
extraction of domain knowledge in practice: The case of feature
extraction from requirements at danfoss. In: Proceedings of the 24th
ACM Conference on Systems and Software Product Line: Volume
A - Volume A, SPLC ’20, Association for Computing Machinery,
New York, NY (2020). https://doi.org/10.1145/3382025.3414968

9. Martinez, J., Wolfart, D., Assunção, W.K.G., Figueiredo, E.:
Insights on software product line extraction processes: Argouml
to argouml-spl revisited. In: Proceedings of the 24th ACM Con-
ference on Systems and Software Product Line: Volume A, SPLC
’20, Association for ComputingMachinery, NewYork, NY (2020).
https://doi.org/10.1145/3382025.3414971

10. Schlie, A., Knüppel, A., Seidl, C., Schaefer, I.: Incremental feature
model synthesis for clone-and-own software systems in mat-
lab/simulink, SPLC ’20, Association for Computing Machinery,
New York, NY. USA (2020). https://doi.org/10.1145/3382025.
3414973

11. Assunção, W.K.G., Vergilio, S.R., Lopez-Herrejon, R.E.: Auto-
matic extraction of product line architecture and feature models
from uml class diagram variants. Information and Software Tech-
nology 117, 106198 (2020). https://doi.org/10.1016/j.infsof.2019.
106198

12. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Le Traon, Y.:
Bottom-up adoption of software product lines: A generic and

123

https://doi.org/10.1109/SPLINE.2006.1691614
https://doi.org/10.1109/SPLINE.2006.1691614
https://doi.org/10.1145/3382025.3414968
https://doi.org/10.1145/3382025.3414971
https://doi.org/10.1145/3382025.3414973
https://doi.org/10.1145/3382025.3414973
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198

Verifying consistency of software product line architectures with product architectures

extensible approach. In: Proceedings of the 19th International Con-
ference on Software Product Line, SPLC ’15, Association for
ComputingMachinery,NewYork,NY, pp. 101–110 (2015). https://
doi.org/10.1145/2791060.2791086

13. Rubin, J., Czarnecki, K., Chechik, M.: Cloned product variants:
From ad-hoc tomanaged software product lines. Int. J. Softw. Tools
Technol. Transf. 17(5), 627–646 (2015). https://doi.org/10.1007/
s10009-014-0347-9

14. Bhushan, M., Goel, S., Kumar, A.: Improving quality of software
product line by analysing inconsistencies in feature models using
an ontological rule-based approach. Expert Syst. 35(3), e12256
(2018). https://doi.org/10.1111/exsy.12256

15. Elfaki, A.O.: A rule-based approach to detect and prevent incon-
sistency in the domain-engineering process. Expert. Syst. 33(1),
3–13 (2016). https://doi.org/10.1111/exsy.12116

16. Asadi, M., Gröner, G., Mohabbati, B., Gašević, D.: Goal-oriented
modeling and verification of feature-oriented product lines. Softw.
Syst. Model. 15(1), 257–279 (2016). https://doi.org/10.1007/
s10270-014-0402-8

17. Thüm, T., Meinicke, J., Benduhn, F., Hentschel, M., von Rhein,
A., Saake, G.: Potential synergies of theorem proving and model
checking for software product lines. In: Proceedings of the 18th
International Software Product Line Conference - Volume 1, SPLC
’14, ACM, New York, NY, pp. 177–186 (2014). https://doi.org/10.
1145/2648511.2648530

18. Zhang, X., Møller-Pedersen, B.: Towards correct product deriva-
tion in model-driven product lines. In: Haugen, Ø., Reed, R.,
Gotzhein, R. (eds.) System Analysis and Modeling: Theory and
Practice, pp. 179–197. Springer, Berlin Heidelberg, Berlin, Hei-
delberg (2013)

19. Czarnecki, K., Pietroszek, K.: Verifying feature-based model tem-
plates against well-formedness ocl constraints. In: Jarzabek, S.,
Schmidt, D.C., Veldhuizen, T.L. (Eds.), GPCE, ACM, 2006, pp.
211–220

20. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of
product lines. In: Proceedings of the 6th International Conference
on Generative Programming and Component Engineering, GPCE
’07, ACM, New York, NY, pp. 95–104 (2007)

21. Satyananda, T.K., Lee, D., Kang, S.: A formal approach to verify
mapping relation in a software product line. In: CIT, IEEE Com-
puter Society, pp. 934–939 (2007)

22. Kishi, T., Noda, N.: Formal verification and software product lines.
Commun. ACM 49(12), 73–77 (2006)

23. Brito, P.H.S., Rubira, C.M.F., de Lemos, R.: Verifying archi-
tectural variabilities in software fault tolerance techniques. In:
WICSA/ECSA, pp. 231–240 (2009)

24. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in
multi-view models with variability. In: Kühne, T., Selic, B., Ger-
vais, M.-P., Terrier, F. (Eds.), ECMFA, Vol. 6138 of Lecture Notes
in Computer Science, Springer, pp. 217–232 (2010)

25. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A
practical owl-dl reasoner, Web Semantics: Science, Services and
Agents on the World Wide Web vol 5, no. 2, pp. 51–53, (2007)
software Engineering and the Semantic Web

26. Selic, B.: Model-driven development: Its essence and opportuni-
ties. In: Proceedings of the Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Com-
puting, ISORC ’06, IEEE Computer Society, Washington, DC, pp.
313–319 (2006)

27. Duran-Limon, H.A., Velasco-Elizondo, P., Mora, M., Meda-
Campana, M.E., Aguilar, K., Soto-Sumuano, L., Hernanddez-
Ochoa, M.: Ontopav framework: Complementary documents
(2022). https://github.com/hduran-limon/OntoPAV

28. Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering:
Principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998).
https://doi.org/10.1016/S0169-023X(97)00056-6

29. Guarino,N., Oberle, D., Staab, S.:What Is anOntology?Handbook
on Ontologies, pp. 1–17. Springer, Berlin (2009)

30. Horridge, M., Drummond, N., Jupp, S., Moulton, G., Stevens, R.:
A practical guide to building owl ontologies using the protege-owl
plugin and co-ode tools edition 1.2, Tech. rep., Technical report,
The University Of Manchester (2009)

31. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-
Schneider, P.F.: The Description Logic Handbook. Cambridge
University Press, New York (2007)

32. Wang, H.H., Li, Y.F., Sun, J., Zhang, H., Pan, J.: Verifying feature
models using owl. Web Semant. 5, 117–129 (2007)

33. Foundation, T.E.: Acceleo, http://www.acceleo.org/. Accessed:
2019-06-06 (2019)

34. W3C, Turtle, http://www.w3.org/TeamSubmission/turtle/,
accessed: 2021-06-06 (2019)

35. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman,
M.: Chapter six-mutation testing advances: An analysis and survey,
Vol. 112 of Advances in Computers, Elsevier, pp. 275–378 (2019).
https://doi.org/10.1016/bs.adcom.2018.03.015

36. Andrews, J.H.,Briand,L.C., Labiche,Y.,Namin,A.S.:Usingmuta-
tion analysis for assessing and comparing testing coverage criteria.
IEEE Trans. Softw. Eng. 32(8), 608–624 (2006). https://doi.org/
10.1109/TSE.2006.83

37. Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M.A.,
Marinov, D.: Comparing non-adequate test suites using coverage
criteria. In: Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, Association for Com-
putingMachinery, NewYork, NY, pp. 302–313 (2013). https://doi.
org/10.1145/2483760.2483769

38. Offutt, J.: A mutation carol: Past, present and future. Inf. Softw.
Technol. 53(10), pp. 1098–1107 (2011) special Section on Muta-
tion Testing. https://doi.org/10.1016/j.infsof.2011.03.007

39. Fraser, G., Arcuri, A.: Achieving scalable mutation-based gener-
ation of whole test suites. Empirical Softw. Eng. 20(3), 783–812
(2015)

40. Papadakis, M., Malevris, N.: Automatic mutation test case gen-
eration via dynamic symbolic execution. In: 2010 IEEE 21st
International Symposium on Software Reliability Engineering, pp.
121–130 (2010). https://doi.org/10.1109/ISSRE.2010.38

41. Ferreira, J.M., Vergilio, S.R., Quináia, M.A.: Software product line
testing based on feature model mutation. Int. J. Softw. Eng. Knowl.
Eng. 27, 817–840 (2017)

42. Devroey,X., Perrouin,G.. Papadakis,M., Legay,A., Schobbens, P.-
Y., Heymans, P.: Featuredmodel-basedmutation analysis. In: 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), pp. 655–666 (2016). https://doi.org/10.1145/2884781.
2884821

43. Henard, C., Papadakis, M., Le Traon, Y.: Mutation-based genera-
tion of software product line test configurations. In: Le Goues, C.,
Yoo, S. (eds.) Search-Based Software Engineering, pp. 92–106.
Springer International Publishing, Cham (2014)

44. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.:
Assessing software product line testing via model-based mutation:
An application to similarity testing. In: 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation
Workshops, pp. 188–197 (2013). https://doi.org/10.1109/ICSTW.
2013.30

45. Papadakis,M.,Malevris,N.:Anempirical evaluationof thefirst and
second order mutation testing strategies. In: 2010 Third Interna-
tional Conference on Software Testing, Verification, andValidation
Workshops, pp. 90–99 (2010). https://doi.org/10.1109/ICSTW.
2010.50

46. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of
reasoners for large ontologies in the owl 2 el profile. Semant. web
2(2), 71–87 (2011). https://doi.org/10.3233/SW-2011-0034

123

https://doi.org/10.1145/2791060.2791086
https://doi.org/10.1145/2791060.2791086
https://doi.org/10.1007/s10009-014-0347-9
https://doi.org/10.1007/s10009-014-0347-9
https://doi.org/10.1111/exsy.12256
https://doi.org/10.1111/exsy.12116
https://doi.org/10.1007/s10270-014-0402-8
https://doi.org/10.1007/s10270-014-0402-8
https://doi.org/10.1145/2648511.2648530
https://doi.org/10.1145/2648511.2648530
https://github.com/hduran-limon/OntoPAV
https://doi.org/10.1016/S0169-023X(97)00056-6
http://www.acceleo.org/
http://www.w3.org/TeamSubmission/turtle/
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1109/ISSRE.2010.38
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ICSTW.2013.30
https://doi.org/10.1109/ICSTW.2013.30
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.3233/SW-2011-0034

H. A. Duran-Limon et al.

47. Knüppel, A.: The role of complex constraints in feature modeling,
Master’s thesis, Institute of Software Engineering and Automotive
Informatics, Technische Universität Carolo-Wilhelmina zu Braun-
schweig (2016)

48. Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A.,
Benavides, D., Segura, S., Egyed, A.: An assessment of search-
based techniques for reverse engineering feature models. J. Syst.
Softw. 103, 353–369 (2015). https://doi.org/10.1016/j.jss.2014.10.
037

49. Martinez, J., Assunção, W.K.G., Ziadi, T.: Espla: a catalog of
extractive spl adoption case studies. In: Proceedings of the 21st
International Systems andSoftware Product LineConference -Vol-
ume B, SPLC ’17, Association for Computing Machinery, New
York, NY, pp. 38–41 (2017). https://doi.org/10.1145/3109729.
3109748

50. Schulze, S., Schulze,M., Ryssel, U., Seidl, C.: Aligning coevolving
artifacts between software product lines and products. In: Proceed-
ings of the Tenth International Workshop on Variability Modelling
of Software-Intensive Systems, VaMoS ’16, Association for Com-
putingMachinery, NewYork, NY, pp. 9–16 (2016). https://doi.org/
10.1145/2866614.2866616

51. Kirchhof, J.C., Nieke, M., Schaefer, I., Schmalzing, D., Schulze,
M.: Variant and Product Line Co-Evolution, pp. 333–351. Springer
International Publishing, Cham (2021)

52. Yang, D., Dong, M.: Applying constraint satisfaction approach to
solve product configuration problems with cardinality-based con-
figuration rules. J. Intell. Manuf. 24(1), 99–111 (2013). https://doi.
org/10.1007/s10845-011-0544-2

53. Guo, J., Wang, Y., Trinidad, P., Benavides, D.: Consistency main-
tenance for evolving feature models. Expert Syst. Appl. 39(5),
4987–4998 (2012). https://doi.org/10.1016/j.eswa.2011.10.014

54. Gheyi, R., Massoni, T., Borba, P.: Automatically checking feature
model refactorings. J. Univ. Comput. Sci. 17(5), 684–711 (2011)

55. Noorian, M., Ensan, A., Bagheri, E., Boley, H., Biletskiy, Y.: Fea-
ture model debugging based on description logic reasoning, pp.
158–164 (2011)

56. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.:
Automated error analysis for the agilization of feature modeling.
J. Syst. Softw. 81(6), 883–896 (2008)

57. Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based
Method for Verification of Feature Models, pp. 115–130. Springer,
Berlin (2004)

58. Yan, H., Zhang,W., Zhao, H.,Mei, H.: AnOptimization Strategy to
FeatureModels’Verification byEliminatingVerification-Irrelevant
Features and Constraints, pp. 65–75. Springer, Berlin (2009)

59. Mendonca, M., Wasowski, A., Czarnecki, K.: Sat-based analysis
of feature models is easy. In: Proceedings of the 13th International
Software Product Line Conference, SPLC ’09, Carnegie Mellon
University, Pittsburgh, PA, pp. 231–240 (2009)

60. Segura, S.: Automated analysis of featuremodels using atomic sets.
In: Software Product Lines, 12th International Conference, SPLC
2008, Limerick, Ireland, September 8-12, 2008, Proceedings. Sec-
ond Volume (Workshops), pp. 201–207 (2008)

61. Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an
expert survey on capabilities supporting multi product lines. Inf.
Softw. Technol. 54(8), 828–852 (2012). special Issue: Voice of the
Editorial Board

62. Thüm, T.,Winkelmann, T., Schröter, R., Hentschel, M., Krüger, S.:
Variability hiding in contracts for dependent software product lines.
In: Proceedings of the Tenth InternationalWorkshop on Variability
Modelling of Software-intensive Systems, VaMoS ’16, ACM,New
York, pp. 97–104 (2016)

63. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware mod-
ule system. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’12, ACM, New York, pp. 773–792 (2012)

64. Janota, M., Botterweck, G.: Formal Approach to Integrating Fea-
ture and Architecture Models, pp. 31–45. Springer, Berlin (2008)

65. van der Storm, T.: Generic Feature-Based Software Composition,
pp. 66–80. Springer, Berlin (2007)

66. Horcas, J.-M., Cortiñas, A., Fuentes, L., Luaces, M.R.: Combining
multiple granularity variability in a software product line approach
for web engineering. Inf. Softw. Technol. 148, 106910 (2022).
https://doi.org/10.1016/j.infsof.2022.106910

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Hector A. Duran-Limon is cur-
rently a full Professor at the Infor-
mation Systems Department, Uni-
versity of Guadalajara, Mexico.
He completed a PhD at Lancaster
University, England in 2002. Fol-
lowing this, he was a post-doctoral
researcher until December 2003.
He obtained an IBM Faculty award
in 2008. His research interests
include Cloud Computing and
High Performance Computing
(HPC). He is also interested in
Software Architectures, Software
Product Lines and Component-

based Development. In 2006, He was invited to create a PhD pro-
gram in Information Technologies for the University of Guadalajara,
becoming a member of the Academic-Council. Contact him at the
Information Systems Department, University of Guadalajara, Mexico;
hduran@cucea.udg.mx.

Perla Velasco-Elizondo is a
researcher at the Autonomous Uni-
versity Zacatecas (Mexico). Her
career includes positions such as
Postdoctoral Researcher in the
Architecture Based Languages and
Environments group at the Insti-
tute for Software Research of the
Carnegie Mellon University (USA),
Associate Professor at the Centre
for Mathematical Research (Mex-
ico) and at the National Labora-
tory of Advanced Computer Sci-
ence (Mexico). In all these insti-
tutions she has gained significant

expertise in her main topics of interests: Software Architecture and
Software Engineering. She teaches in under- and post-graduate pro-
grams in Software Engineering. She has also experience as a trainer
for industry professionals; she has designed and executed customized
training programs for industry professionals on topics such as: archi-
tectural requirements, design concepts, software architecture and soft-
ware project management. Perla Velasco-Elizondo has worked with
practicing software architects and software enginners helping them to

123

https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1007/s10845-011-0544-2
https://doi.org/10.1007/s10845-011-0544-2
https://doi.org/10.1016/j.eswa.2011.10.014
https://doi.org/10.1016/j.infsof.2022.106910

Verifying consistency of software product line architectures with product architectures

deploy project management, software architecture and software engi-
neering practices and methods. She has some Software Architecture
Certifications issued by Carnegie Mellon University - Software Engi-
neering Institute. She also holds the Scrum Master certificate and the
Kanban Team Practitioner certificate from the Scrum Alliance and
the LeanKanban University, respectively. Perla Velasco-Elizondo co-
authored one of the few books in Spanish on software architecture:
Software Arquitectura: Conceptos y Ciclo de Desarrollo.

Manuel Mora has published over
100 research papers in interna-
tional top conferences, research
books, and refereed journals listed
in JCRs and Scopus indexes. He
has also co-edited five interna-
tional research books on the top-
ics of DMSS, IT Services and
Data Centers, and Research Meth-
ods. He holds an M.Sc. in Arti-
ficial Intelligence (1989) fromMon-
terrey Tech, and an Eng.D. in Engi-
neering (2003) from the National
Autonomous University of Mex-
ico (UNAM), and currently is a

full-time Professor at the Autonomous University of Aguascalientes
(UAA), Mexico. His current research interests are agile development
methodologies for: IT services, Big Data Analytics systems, ontology-
based KMS, and SOA/MSA-based software systems. Prof. Mora is
also an ACM Senior Member and a Mexican National Researcher at
Level II.

Maria E. Meda-Campana received
her Ph.D. in electronic engineer-
ing in 2002 at the Research Cen-
ter and Advanced Studies of the
National Polytechnic Institute, Mex-
ico. Since 2003 she has worked at
the University of Guadalajara as
a full-time professor in the Infor-
mation System Department. Her
main research field deals with the
modeling and applications of dis-
crete event systems (DES) based
on interpreted Petri nets (IPN).
Current work deals with the anal-
ysis of the properties to character-

ize identifiable and diagnosable DES.

Karina Aguilar is the Postgrad-
uate Coordinator at the Univer-
sidad Autónoma de Guadalajara.
She is a professor and director
of several postgraduate theses on
software engineering topics. Dr.
Aguilar has participated in several
national and international forums
with business and government orga-
nizations, maintains close relation-
ships with the high-tech industry,
and has received numerous teach-
ing, research, service, and leader-
ship awards.

Martha Hernandez-Ochoa is cur-
rently a full professor and researcher
at the Knowledge Fundamentals
Department, University of Guadala-
jara, since 2017. She received a B.
S. degree in Computer Engineer-
ing from University of Guadala-
jara. Later, she received MSc. and
Ph. D degree in Computer Sci-
ence from CINVESTAV, IPN,
Guadalajara. Her research inter-
ests include Wireless Network, Per-
formance Models, Data commu-
nications and Networking, IoT and
Data Acquisition Systems.

Leonardo Soto Sumuano PhD-
Engineer in Computer Systems with
Specialization in Telecommunica-
tions, Pierre et Marie Curie Uni-
versity, Paris VI (Paris, France
1986) Communications and Elec-
tronics Engineer from the Uni-
versidad Autonoma Metropolitana
Unidad Iztapalapa (1980). He has
projects as Engineer-Researcher at
Telefónica Investigación y Desar-
rollo (TIDSA, Madrid) at the Cen-
tro Nacional de Estudios en Tele-
comunicaciones (CNET, Lannion
France), and project leader at the

Centro de Investigación y Desarrollo de Teléfonos de México (1986-
1992). Member of the National System of Researchers of Mexico.
Technology and Health research area. Environment and Environmen-
tal Pollution by non-ionizing electromagnetic radiation (RNI) and
electronic waste.

123

	Verifying consistency of software product line architectures with product architectures
	Abstract
	1 Introduction
	2 Motivating example
	3 The OntoPAV framework
	4 Verification rules and queries
	4.1 Verification rules
	4.2 Query invalid connections

	5 The verification process
	5.1 Identify invalid connections
	5.2 Identify errors with Mandatory, OR, Alternative, and Optional connections, and with requires/excludes relationships

	6 Evaluation
	6.1 Prototype implementation
	6.2 Accuracy evaluation
	6.3 Scalability evaluation
	6.4 Discussion
	6.5 Limitations and threats to validity

	7 Related work
	8 Conclusion
	Acknowledgements
	Appendix A
	References

