
Towards Detecting MVC Architectural Smells

Perla Velasco-Elizondo 1, Lucero Castañeda-Calvillo 2,
Alejandro García-Fernandez 3 and Sodel Vazquez-Reyes 1

1 Autonomous University of Zacatecas, Zacatecas, ZAC, 98000, Mexico.

2 Centre for Computing Research, Mexico City, 07738, Mexico.
3 Centre for Mathematical Research, Zacatecas, ZAC, 98060, Mexico.

{pvelasco, vazquezs}@uaz.edu.mx, b160629@sagitario.cic.ipn.mx, agarciafdz@cimat.mx

Abstract. The term “bad smell” denotes a symptom of poor design or implementation that
negatively impacts a software system’s properties. The research community has been actively
identifying the characteristics of bad smells bad smells as well as developing approaches for
detecting and fixing them. However, most of these efforts focus on smells that occur at code level:
little consideration is given to smells that occur at higher levels of abstraction. This paper presents
an initial effort to fill this gap by contributing to (i) the characterization of bad smells that are
relevant to the Model-View-Controller architectural style and (ii) assessing the feasibility of their
automatic detection using text analysis techniques in five systems, implemented with the Yii
Framework. The obtained results show that the defined smells exist in practice and give some
insight into which of them tend to occur more frequently. Regarding the automatic detection
method, results show that it exhibits good performance and accuracy.

Keywords: Software Architecture, Bad Smells, static analysis, text analysis, MVC, Yii.

1 Introduction

In Software Engineering the term bad smell, hereafter referred to as “smell”, is used to
denote a symptom of poor design or implementation that negatively impacts a software
system’s properties (e.g., maintainability, testability, reusability.) [1]. A smell is usually
used to indicate a potential problem with software. Although not universally agreed upon,
it is generally accepted that smells can occur at different levels of abstraction going from
source code (e.g., long parameter list [2]) to architecture (e.g., connector envy [3]).

Smells are a common factor in the accumulation of technical debt [4]. Thus, detecting
and fixing them becomes relevant to software system development. In recent years, the
research community has been actively characterising smells (e.g. [5]) as well as
developing approaches and tools for detecting and fixing them (see [6]). However, most
of these efforts focus on smells that occur at lower levels of abstraction and few of them
characterize, identify and fix smells at the architectural level. Additionally, in these works
little consideration is given to performing these activities within the context of

© Springer International Publishing AG 2018
J. Mejia et al. (eds.), Trends and Applications in Software Engineering,
Advances in Intelligent Systems and Computing 688,
https://doi.org/10.1007/978-3-319-69341-5_23

architectural styles, which are design structures commonly used for software
development.

The work presented in this paper is an initial effort to fill this gap by contributing to (i)
the characterisation of a set of smells that are relevant to the Model-View-Controller
(MVC) architectural style [7], which has been widely adopted for Web systems in major
programming frameworks, and (ii) assessing the feasibility of the automatic detection of
these smells in five systems implemented with Yii Framework [8] by using text analysis
techniques. The obtained results show that the defined smells exist in practice and give
some insight on which of them tend to occur more. Regarding the automatic detection
method, results show that it exhibits good performance and accuracy.

The remainder of this paper is organized as follows. In section 2 the MVC architectural
style is explained and, based on its general constraints, a characterization of related smells
is defined. Next, in Section 3, an approach to the automatic detection of these smells is
explained. A basic evaluation of the approach is presented in Section 4. In Section 5 a
discussion of related work is presented. Finally, in Section 6, the conclusions of this work
are stated as well as some lines of future work.

2 MVC Architectural Style and Related Smells

Software architecture provides a high-level model of a system in terms of components
and, connectors, and properties of both each [9]. While it is possible to specify the
architecture of a system using this generic vocabulary, it is better to adopt a more
specialized one vocabulary when targeting architectures of a particular application
domain. This specialized modelling vocabulary is known as an architectural style [9].

The MVC architectural style has been widely adopted as an architecture for the design
and implementation of Web systems. Today, many popular development frameworks
allow for the construction of Web systems using this style, e.g., Spring [10], Django [11],
Rails [12], Laravel [13], and Yii [8]. Successful use of this style isolates business from
presentation logic, which results in a system that is easier to test and maintain. Figure 1
shows a graphical representation the MVC architectural style and Table 1 describes the
elements in this representation.

The MVC style defines the following general constraints:

- The Model should not deal directly with processing end-user requests. For example,
its implementation should not contain $_GET, $_POST variables.

- The Model should not deal directly with the presentation of data for end-user
requests. For example, its implementation should not contain HTML presentational
code.

252 P. Velasco-Elizondo et al.

- The View should not deal directly with performing explicit access to system data. For
example, its implementation should not contain code for DB queries.

- The View should not deal directly with end-user requests. For example, its
implementation should not contain $_GET, $_POST variables.

- The Controller should not deal directly with performing explicit access to system
data. For example its implementation should not contain code for DB queries.

- The Controller should not deal directly with the presentation of data for end-user
requests. For example, its implementation should not contain HTML presentational
code.

Fig. 1. Graphical representation of the MVC architectural style

2.1 MVC Smells

The concept of architectural smell was originally used in [14] to describe an indication of
an underlying problem that occurs at a higher level of a system's abstraction than code.
Causes of architectural smells include, amongst others, applying a design solution in an
inappropriate context, mixing combinations of design abstractions, or applying design
abstractions at the wrong level of granularity [14].

Although nearly every Web developer knows the MVC style, properly implementing it
still eludes many [7]. Frequently, the general constraints, as defined in the previous
section, are not respected, resulting in poor design or implementation decisions that we
call MVC Architectural Smells. Based on these constraints, Table 2 describes a
categorisation of smells relevant to the MVC architectural style.

We should note that this categorization of smells is not our own invention, but is a
compilation of elements drawn from several informal sources (e.g. developer blogs,

Towards Detecting MVC Architectural Smells 253

question and answer sites), which we have assembled here in a more comprehensive and
consolidated manner.

Table 1. Description of the elements of the MVC architectural style

Element Description

Model Represents the system’s underlying data and the business rules that govern data
access. It notifies the View of any changes made in the data.

View A representation of the Model in a format desired by the end users. It queries
the Model for any changes made in the data.

Controller

An intermediary between the View and the Model. It receives end users’
actions, commands requests coming from the View, invokes the required
methods in the Model, and changes the View’s presentation of the Model when
necessary.

Table 2. Categorisation of smells relevant to the MVC architectural style

ID Name Description

1. Model includes View’s
computations and/or data

Happens when the Model contains presentation of data
of end-user requests (e.g. HTML code).

2. Model includes Controller’s
computations and/or data

Happens when the Model has direct access to variables
that represent the end-user’s request (i.e. direct access
to $_GET, $_POST variables).

3. View includes Model’s
computations and/or data

Happens when the Controller has domain logic (e.g.
code of DB queries).

4. View includes Controller’s
computations and/or data

Happens when the View has direct access to variables
that represent the end-user’s request (i.e. direct access
to $_GET, $_POST variables.).

5. Controller includes View’s
computations and/or data

Happens when the Model contains presentation of data
of end-user requests (e.g. HTML code).

6. Controller includes Model’s
computations and/or data

Happens when the Controller has domain logic (e.g.
code of DB queries).

3 MVC Code Sniffer

PHP_CodeSniffer is a static analysis tool that “sniffs” PHP code files to detect violations
of a given set of rules defined in a coding standard [15]. It works by tokenising the
contents of a code file into building blocks. These are then validated through the use of
text analysis to check a variety of aspects against the coding standard in question. In this
context, a coding standard can be seen as a set of conventions regulating how code must

254 P. Velasco-Elizondo et al.

be written. These conventions often include formatting, naming, and common idioms.
Multiple coding standards can be used within PHP_CodeSniffer. After the analysis
process, PHP_CodeSniffer outputs a list of violations found, with corresponding error
messages and line numbers.

3.1 MVC Sniff files

A coding standard in PHP_CodeSniffer consists of a collection of open-source sniff files.
Each sniff file checks one convention of the coding standard and can be coded in PHP,
JavaScript, or CSS. Thus, it is possible to create new coding standards by reusing,
extending, and building new sniff files.

To detect MVC Architectural Smells, we built a Yii MVC code standard. The sniff files in
this code standard are PHP classes, which are used in six smell detection algorithms that
allow sniffing for the smells defined in Table 2.1 Figure 2 shows an excerpt from the code
of a sniff file. This sniff file, in combination with others, is utilised to detect smell number
6, which is Controller includes Model’s computations and/or data. As previously
explained, this smell is related to an issue with a Controller performing the responsibilities
of a Model. Thus, in terms of code, this smell results in a Model including code to read,
write, or update data or data stores, typically in a database.

As shown in Figure 2, a sniff class must implement the
interface. This interface declares two functions that are needed for code analysis: the

 and functions. The function allows a sniff to retrieve the
types of token that it will process, in this case strings. Once these tokens are available, the

 function is called with a representation of the code file being checked and the
position in the stack where the token was found: the and

 parameters, respectively.

Information about a token can be found through a call to the method on the
code file being checked (line 13). This method then returns an array of tokens, which is
indexed by the position of the token in the token stack. Tokens have a index in
the array, consisting of the content of the token as it appears in the code.

The implemented analysis detects the statement (line 14) in the code of a
Controller file. This statement allows for the deletion of existing records in a database. If
the statement is discovered in the code, the corresponding smell detection
message is triggered (lines 17-20). A sniff indicates that an error has occurred by calling
the which generates the created error message as the first
argument, and the position in the stack where the occurrence was detected as the second

1 The code standard can be downloaded from https://github.com/Lucerin/Yii.

Towards Detecting MVC Architectural Smells 255

argument, including code to uniquely identify the type of error within this sniff and an
array of data used inside the error message.

Fig. 2. Excerpt of a sniff file for smell number 6: Controller includes Model’s computations and/or
data

When PHP_CodeSniffer is run on a Yii project using the Yii MVC code standard, there
are two possible report types that can be obtained: detailed or summary. Figure 3 shows
an example of a detailed report that produces a list of smells found, including
corresponding error messages and line numbers. This figure shows the report produced
from the analysis of a single code file: Figure 4
illustrates a sample summary report, which gives the total of all detected smells arranged
by type.

4 Evaluation

In order to assess whether the definition of the Architectural Smells was appropriate, we
wanted to compare them to a “gold standard” (as in Information Retrieval Systems). As
far as we know, there is not a gold standard for determining the number of smells
introduced in a MVC system. For this reason we ran a set of basic experiments on existing
systems. Specifically, five systems created by third parties and implemented with the Yii
Framework were analysed to detect MVC Architectural Smells using the
PHP_CodeSniffer with the defined Yii MVC code standard. The systems are public and
open-source, and can be downloaded from github.

256 P. Velasco-Elizondo et al.

Table 3 shows the results obtained from running the experiments. Each of the analysed
systems had smells. It is notable that the architectural smell that occurred most frequently
was smell number 6: Controller includes Model’s computations and/or data. The only
smell with no occurrences in all analysed systems was smell number 4: View includes
Controller’s computations and/or data.

Fig. 3. An example of the errors reported in the detailed report

Fig. 4. Example of the summary report showing detected errors

For most of the systems, the time required for analysis was reasonably minimal. The
exception was the analysis of system 1, which took 69 min, 49 sec. It should be noted,
however, that the number of smells that this system had was significantly higher

Towards Detecting MVC Architectural Smells 257

compared to the other systems and we believe that the time required for automatic
detection is nonetheless a significant improvement compared to the complexity and
challenge of detecting these smells manually.

Table 3. Results obtained by using PHP_CodeSniffer with the Yii MVC code standard.

System LOC Detected
Smells

Most Occurring
Smell

Smell with no
Occurrences Analysis Time

1. Linkbooks 66, 954 176 6 4 69 min, 49 sec
2. yii play
ground 17, 341 20 6 4 10 min, 54 sec

3. Blog
Bootstrap 6, 393 15 6 4 5 min, 5 sec

4. yii2-shop 5, 324 14 6 4 4 min, 37 sec

5. yii-jenkis 836 1 6 1, 2, 3, 4
and 5 1.57 sec

Having discussed the results of this basic analysis, in the next section we will cover areas
of related work.

5 Related Work

There are two primary categories of related work: (i) code smell catalogues and (ii) code
smell detection approaches. In this section, we relate our work to other literature on these
two categories.

Code smell catalogues. Despite the range of works discussing the impact of bad smells
in software architecture, very few catalogues of architectural smells have been proposed.
One of these is proposed in [3] and includes four architectural smells, namely, connector
envy, scattered parasitic functionality, ambiguous interfaces, and extraneous adjacent
connector. In [16] the authors conducted a systematic review so as to to characterize
architectural smells in the context of product lines. The authors reported a set of 14
architectural smells which, in addition to the 4 smells in [3] and SLP-specific versions of
those smells (e.g. connector envy SPL), includes component concern overload, cyclic
dependency, overused interface, redundant interface, unwanted dependencies and feature
concentration. Additionally, of the few catalogues that do consider smells at the
architectural level, none of these consider smells within the context of an architectural
style, in sharp contrast to our work.

Code smell detection tools. In [6] the authors present the findings of a systematic
literature review of 84 bad smell detection tools. Among other observations, the authors

258 P. Velasco-Elizondo et al.

report that existing tools for analysing code concentrate on 3 main languages, namely,
Java, C, and C++. They found only 4 tools for the analysis of systems coded in PHP. With
regard to detection strategies, the authors discovered that most of the tools are metric-
based. Less frequently used detection strategies include tree-based, text analysis, program
dependence graph, machine learning, and logic meta-programming. Finally, the authors
found 61 different bad smells detectable by tools, including Fowler’s [1] as well as others
discussed in sources such as [17], [18], [19] and [20]. In contrast with most of these
described tools, the tool presented in this paper can detect smells in systems implemented
in PHP. Furthermore, the smells detected by our tool are architectural and relevant to the
MVC architectural style.

6 Conclusions and Future Work

In this paper, we presented our progress toward (i) characterising a set of smells that are
relevant to the MVC architectural style, as well as (ii) assessing the feasibility of
automatically detecting these smells. The results obtained from our experiments in
automatic detection show that most of the characterised smells do exist in practice. Our
use of text analysis for the purposes of smell detection is a primary focus of this paper,
and experiments implementing this technique demonstrated effective, accurate results.

Although the material presented is this paper is still a work in progress, we believe that
our preliminary results are valuable not only to researchers but also to developers, who
may wish to begin using PHP_CodeSniffer with the defined Yii MVC code standard.

In our future work, we plan to investigate related aspects, including the identification and
categorization of other smells that may occur in MVC architectures, smell detection in
other coding languages, and the enhancement of tool support.

We believe that it is possible to add to our initial set of MVC Architectural Smells by
incorporating smells that are, as yet, undocumented in literature. We envision a
classification for MVC Architectural Smells based on dimension, such as behaviour and
structure [5]. All smells detected by the technique detailed in this paper belong to the
behavioural dimension.

As described in [6] most detection tools are restricted to detecting smells in specific
programming languages, which is a significant limitation of existing smell detection tools.
By contrast, machine learning techniques are computational methods that use
“experience” to make accurate predictions. We believe that the application of machine
learning techniques to the detection of architectural smells can provide performance and
accuracy, as well as multi-language support, while only requiring a few sets of training
examples.

Finally, with regard to enhancing tool support, we intend to explore the identification of
refactoring for identified smells.

Towards Detecting MVC Architectural Smells 259

References

1. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley (1999).

2. Source Makings, Code Smells, https://sourcemaking.com/refactoring/smells
3. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Toward a catalogue of architectural bad

smells. In 5th International Conference on the Quality of Software Architectures, pp. 146—
162. Springer-Verlag, Berlin, Heidelberg (2009).

4. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, A.,
Nord, R. L., Ozkaya, I., Sangwan, R. S., Seaman, C.B., Sullivan, K.J., Zazworka, N.:
Managing technical debt in software reliant systems. In Workshop on Future of Software
Engineering Research, at the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 47--52. ACM (2010).

5. Ganesh, S.G., Sharma, T., Suryanarayana, G.: Towards a Principle-based Classification of
Structural Design Smells. Journal of Object Technology, 12 (2), 1-29 (2013).

6. Fernandes, E., Oliveira, J., Vale, G. Paiva, T., Figueiredo, E.: A review-based comparative
study of bad smell detection tools. In 20th International Conference on Evaluation and
Assessment in Software Engineering, pp. 109--120. ACM, New York (2016).

7. Best MVC Practices, http://www.yiiframework.com/doc/guide/1.1/en/basics.best-practices
8. yiiFramework, http://www.yiiframework.com
9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

Professional (2012).
10. Spring, https://spring.io
11. Django, https://www.djangoproject.com
12. Rails, http://rubyonrails.org
13. Laravel, https://laravel.com
14. Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Complex

Restructurings Successfully. Wiley (2006).
15. PHP_CodeSniffer, https://pear.php.net/package/PHP_CodeSniffer
16. Vale, G., Figueiredo, E., Abílio, R., Costa, H.: Bad Smells in Software Product Lines: A

Systematic Review. In Eighth Brazilian Symposium on Software Components, Architectures
and Reuse, pp. 84--94. IEEE Computer Society, Washington, DC (2014).

17. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An Experimental
Investigation on the Innate Relationship between Quality and Refactoring. Journal of Systems
and Software, 107, 1--14 (2015).

18. Khomh, F., Vaucher, S., Guéhéneuc, Y., Sahraoui, H.: BDTEX: A GQM-based Bayesian
Approach for the Detection of Antipatterns. Journal of Systems and Software, 84, 559--572
(2011).

19. Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y. G., Antoniol, G., Aimeur, E.:
Support Vector Machines for Anti-pattern Detection. In 27th International Conference on
Automated Software Engineering, pp. 278--281. IEEE Press, New York (2012).

20. Vidal, S., Marcos, C., Díaz-Pace, J.: An Approach to Prioritize Code Smells for Refactoring.
Automated Software Engineering, 23, 501--532 (2014).

260 P. Velasco-Elizondo et al.

