Science of Computer Programming 121 (2016) 176-189

Y
cience of Computer
(o ming

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Knowledge representation and information extraction for @CmssMark
analysing architectural patterns
Perla Velasco-Elizondo ®*, Rosario Marin-Pifia°, Sodel Vazquez-Reyes?,

Arturo Mora-Soto P, Jezreel MejiaP

a Autonomous University of Zacatecas, Zacatecas, ZAC., 98160, Mexico
b Centre for Mathematical Research, Zacatecas, ZAC., 98060, Mexico

ARTICLE INFO ABSTRACT
Article history: Today, many software architecture design methods consider the use of architectural
Received 15 April 2015 patterns as a fundamental design concept. When making an effective pattern selection,

Received in revised form 16 December 2015
Accepted 30 December 2015
Available online 21 January 2016

software architects must consider, among other aspects, its impact on promoting or
inhibiting quality attributes. However, for inexperienced architects, this task often requires
significant time and effort. Some reasons of the former include: the number of existing
patterns, the emergence of new patterns, the heterogeneity in the natural language

ii{;zigg;ral design descriptions used to define them and the lack of tools for automatic pattern analysis. In
Architectural patterns this paper we describe an approach, based on knowledge representation and information
Quality attribute extraction, for analysing architectural pattern descriptions with respect to specific quality
Ontology attributes. The approach is automated by computable model that works as a prototype
Information extraction tool. We focus on the performance quality attribute and, by performing experiments on

a corpus of patterns with forty-five architects of varying levels of experience, demonstrate
that the proposed approach increases recall and reduces analysis time compared to manual
analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When the architecture of a software system is designed, one key task is the selection of design concepts in order to
satisfy a set of architectural drivers [1]. Architectural drivers are requirements that shape a software system and consist
of high-level functional requirements, constraints, and quality attribute requirements [2]. Many software architecture design
methods consider patterns as a fundamental design concept, e.g., Rozanski and Woods’ [3], ADD [1], Microsoft’s Technique
for Architecture and Design [4]. The ones of our interest are architectural patterns, which denote a reusable named solution
applicable to a commonly occurring problem in software architecture design. There are a number of architectural pattern
catalogues that software architects have been using for years, e.g., Pattern-Oriented Software Architecture [5| and Patterns
of Enterprise Application Architecture [G].

When making an effective pattern selection, software architects must consider, among other aspects, its impact on pro-
moting or inhibiting quality attributes. However, for inexperienced architects, this task requires significant effort and can be
time consuming for reasons including:

* Corresponding author.
E-mail address: pvelasco@uaz.edu.mx (P. Velasco-Elizondo).

http://dx.doi.org/10.1016/j.scic0.2015.12.007
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:pvelasco@uaz.edu.mx
http://dx.doi.org/10.1016/j.scico.2015.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.12.007&domain=pdf

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 177

(i) The number of existing patterns. Nowadays there are plenty of architectural patterns’ catalogues, e.g., Pattern-Oriented
Software Architecture [5], Patterns of Enterprise Application Architecture [6], Service Oriented Architecture (SOA) Design
Patterns [7], Service Design Patterns 8], Big Data Application Architecture [9]. Most of these catalogues describe more
than fifty patterns; each pattern description is about two pages. Some reading time estimations state that reading and
understanding one page of text takes from two to six minutes depending on the reader’s experience on the subject
[10]. Based on an average of four minutes per page, if a two-page pattern takes a total of eight minutes to read and
understand, one hundred pattern descriptions would require approximately thirteen hours.

(ii) The emergence of new patterns. Since architectural patterns are fundamental design concepts, every time a new software
development paradigm appears, new patterns related to it also arise. For example, the popularization of SOA promoted
the definition of architectural patterns as the ones in SOA Design Patterns [7] and Service Design Patterns [8] catalogues.
Similarly, cloud and big data software systems have contributed to the emergence of architectural patterns to tackle
specific architectural drivers in these contexts, e.g., MapReduce Design Patterns [11], Big Data Application Architecture
[9], Cloud Design Patterns [12]. Thus, the number of pattern descriptions an architect must read and consider at any
given time is always increasing, adding to the time and effort required to evaluate them.

(iii) The heterogeneity of pattern descriptions. Although most patterns are defined in terms of a common set of elements, e.g.,

name, intent, context, participants, the description of these elements is written in natural language without standard-

ization. For example, in describing quality attributes, a variety of concepts could be used to describe whether a pattern
promotes or inhibits performance quality, including ‘concurrency’, ‘overhead’, ‘speed’, ‘latency’ or ‘capacity’. This lack of
standardized terminology could have an impact on how the elements are understood and evaluated by inexperienced

architects [13].

The lack of tools for automatic pattern analysis. There are some tools that an architect could use to automatically identify

the most suitable patterns for a software architecture design. However, the lack of a standard mechanism for indexing

pattern catalogues as well as more efficient search engines makes these tools limited [13]. As it will be explained in

Section 2, in most of the tools pattern selection is made from a pre-defined pattern repository. Most of the time, this

repository is static and cannot be extended to include new patterns. When it is possible, the analysis and classification

of new patterns are performed manually, becoming a time consuming task.

—
-y
<

=

In this work we describe an approach, based on knowledge representation and information extraction, to automate the
analysis of architectural pattern descriptions and help inexperienced software architects with determining whether specific
quality attributes are promoted or inhibited. Knowledge representation methods provide a basis on which to design and
implement mechanisms for representing information in computers so that programs can use this information to solve
problems in areas that normally require human expertise [14]. On the other hand information extraction allows extraction
from text documents salient facts about pre-specified types, entities or relationships [15,16]. The approach is automated
by computable model that works as a prototype tool. In this paper we focus on the performance quality attribute and, by
performing experiments on a corpus of patterns with forty-five architects of varying levels of experience, demonstrate that
the proposed approach increases recall and reduces analysis time compared to manual analysis.

This paper is organised as follows: in Section 2 we describe relevant related work; in Section 3, we describe the proposed
approach to analysing architectural pattern descriptions and in Section 4 we discuss and evaluate this approach. Finally, in
Section 5, we state the conclusions and describe some lines of future work.

2. Related work

There have been several attempts to provide tools and frameworks to assist architects during architectural design. In this
section we relate our work to other literature in this context.

DesignBots [17] is a planning-based design framework that assigns architectural knowledge to agents that compete in
different quality attributes. The framework requires the architect to provide an initial architecture supporting functional
requirements and a weighted set of related quality attributes scenarios [18]. Thus, using a pre-defined set of design con-
cepts as well as information provided by the architect, a set of design alternatives to improve the initial architecture are
automatically generated from the cooperative work of the agents.

Jabali et al. [19] propose a method, and the corresponding tool support, for choosing a suitable software architecture
design that satisfies multiple required quality attributes [19]. The method requires a set of weighted quality attribute re-
quirements and a set of high-level functional requirements. Using a pre-defined set of design concepts, the method applies
data-driven decision making to generate a proposal for the required design.

Hadaytullah et al. [20] present a tool for producing potential architecture proposals using genetic algorithms. The tool
requires a basic functional decomposition of the system, a set of high-level functional requirements and the specification of
the quality requirements. As in previous approaches, the method uses a pre-defined set of design concepts for producing
potential architecture proposals.

Charmy [21] is a framework whose goal is to apply model-checking techniques to discover potential inconsistencies of
an architectural design and allow architects to fix them by applying suggested design decisions. The specification of an
architectural design is given in terms of components, connectors, their internal functional behaviour and relations. When an
adequate design is reached, Java code conforming it can be automatically generated through suitable transformations.

178 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

Table 1
Main characteristics of related works.
Used technique Focus on Required Information
patter‘n Pre-defined Initial architecture Functional Quality attribute
selection gegion concepts design requirements requirements
or experiences

DesignBots [17] multi-agent planning no yes yes yes yes
Jabali et al. [19] data-driven decision- no yes no yes yes

making
Hadaytullah et al. [20] genetic algorithms no yes yes yes yes
Charmy [21] model-checking no yes yes yes no
ArchE [22] rule-based reasoning no yes yes yes yes
Archpad [23] decision models yes yes no yes yes
Weiss and Birukou [24] wiki yes yes no yes yes
SYSAS [25] knowledge-driven yes yes yes yes yes

decision-making
Kampffmeyer and Zschaler [26] ontology yes yes no yes yes
Hsueh et al. [27] ontology yes yes no yes yes
Kim and Khawand [28] ontology yes yes no yes yes
Hasheminejad and Jalili [29] ontology yes yes no yes yes
Pearson and Shen [30] rule-based reasoning yes yes no yes yes
Weiss and Mouratidis [31] goal-based reasoning yes yes no yes yes
Our approach information extraction yes no no no yes

ArchE [22] is a prototype tool that, using knowledge of quality attributes theories, helps architects by suggesting possible
design decisions as well as predicting quality attribute responses of the resulting architecture in specific situations. Based
on a pre-defined set of design concepts, ArchE uses a rule-based engine and reasoning framework to analyse an architecture
for performance and modifiability. ArchE requires three types of inputs: a set of quality attribute requirements, a set of
high-level functional requirements, and an architectural design (if available).

ArchPad [23] is a design method, proposed by Zimmermann et al., based on the use of domain-specific architectural
patterns and decision models. A decision model stores architectural decisions, to promote functional and quality attribute
requirements, harvested from experiences in previous projects. ArchPad identifies the required decisions in requirements
models, gives domain-specific pattern selection advice, and provides traceability from platform-independent patterns to
platform-specific decisions. In ArchPad models are created manually by experts and contain patterns proved to be applicable
in the past projects in the domain.

In [24] Weiss and Birukou present a wiki-based pattern repository. The repository organizes short descriptions of patterns
in collections and allows for their navigation, linking, tagging, commenting and searching. The repository supports any kind
of pattern as long as a it can be described attending a proposed template. These templates are filled manually by design
experts.

SYSAS [25] is a method to select architectural patterns for defining the overall structure of a software system. SYSAS is
based on a mathematical decision-making technique that operates on a set of a pre-defined and closed pattern repository.
The method requires ratings about the importance of functional and quality attribute requirements related to the architec-
tural elements that are relevant for the developer and a description of the target system. The expected output is the total
score, including satisfaction value, of each candidate pattern.

In [26] Kampffmeyer and Zschaler introduce an approach that automates pattern selection. The approach uses an
ontology-based specification of the intent of a set of patterns from which a user executes queries focusing on the de-
sign problem she or he is trying to solve. Some other works in this vein are [27-29], proposed by Hsueh et al., Kim and
Khawand, and Hasheminejad and Jalili respectively. A common aspect in all these approaches is that they characterise ex-
isting patterns considering patterns’ descriptive elements such as intent or structure. Note, however, that the descriptions of
these elements do not always focus on discussing the impact of using the pattern on a system'’s quality attributes. Therefore,
pattern selection is not always quality attribute oriented.

In [30] Pearson and Shen present a decision support system that recommends design patterns satisfying privacy and
security requirements. The system uses a rule-based engine to trigger decisions about appropriate patterns to use for the
specified requirements. Rules and patterns must be created manually by design experts based on their experiences in a
domain. Another similar work is the one presented in [31], by Weiss and Mouratidis, which is based on a goal-oriented
reasoner supporting the selection of the security patterns. A user submits security and other non-functional requirements
as a query to the reasoner, which returns the list of patterns fulfilling the specified requirements.

Table 1 shows a summary of the main characteristics of the above related works. These include used technique - e.g.
multi-agent planning, focus on pattern selection, and required information. Required information includes whether a related
work considers the following factors necessary: a set of pre-defined design concepts or experiences - e.g. a repository of
pattern descriptions or experiences in previous projects, an initial architecture design of the prospective system, as well as
specifications of functional and quality attribute requirements.

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 179

Conjuction Pronoun Adjective
I ‘ ‘ ‘ ‘ ! ‘ Strong Intensifying
. Adverb
Affirmation A
‘ Noun }%‘Eng\lish Term% of Degree Weak Intensifying
Adverb

‘ Verb ‘ Modal Verb Doubt Adverb
of Possibility
‘ Promotes Verb ‘ ‘ Inhibits Verb
No Doubt Doubt
Modal Verb Modal Verb
E of Possibility of Possibility

] concept

Fig. 1. An excerpt of the English ontology.

As can be noted, the approach presented in this paper (listed at the bottom of Table 1) relates to all of the above works
and shares some characteristics with them. However, this work is different from the aforementioned in that (i) it focuses
on quality attribute-oriented pattern selection; (ii) it does not require a pre-defined set of design concepts; (iii) it does not
require specification of the design problem and (iv) it uses information extraction as its main technique. To the best of
our knowledge, there are currently no proposals using information extraction to support the selection of patterns, or other
design concepts, during architectural design.

3. The proposed approach

Knowledge representation methods provide a basis for designing and implementing mechanisms for representing infor-
mation in computers so that programs can use this information to solve problems in areas that normally require human
expertise [14]. Knowledge representation methods apply theories and techniques from three main fields: (i) logic, to pro-
vide a formal structure for information; (ii) ontology, to define the concepts that exist in a specific application domain and
(iii) computation, to allow the logic and ontology to be implemented in computable models to solve problems in some
domain.

In this section we will describe a computable model for analysing architectural pattern descriptions to help software
architects determine whether specific quality attributes are promoted or inhibited. For simplicity, but without significant
loss of generality, the focus is given on the performance quality attribute. Performance is related to the software system’s
ability to meet timing requirements.

3.1. Defining the domain concepts

To support the analysis of architectural pattern descriptions regarding the performance quality attribute we defined an
ontology. This ontology consists of a body of concepts that are expected to be discovered in textual pattern descriptions.
The ontology was modelled in OWL-DL using the OWL extension of Protégé [32]. The defined ontology consists of two
sub-ontologies: the English and Performance. The identification of the concepts in the ontology was performed manually by
a domain expert, in this case a senior software architect with more than ten years’ experience.

The English ontology defines generic English grammar-based concepts often used in architectural pattern descriptions.
Fig. 1 shows an excerpt of this ontology. As can be seen, this ontology includes concepts that are the common English parts
of speech. However, we have further categorised verbs, modal verbs and adverbs considering part of the rationale in some
opinion mining approaches, e.g., [33,34].

Although several classifications exist for English verbs, adverbs and adjectives, e.g., VerbNet [35], Jassem’s adjective clas-
sification [36], Levin’s verb taxonomy [37] and WordNet [38], they are all restricted to certain general domain classes and
often come with few class instance exemplars. Thus, these classifications are not effective for architectural pattern analysis.
This motivated the definition of the sub-classes shown in Fig. 1. Next, these sub-classes are briefly described.

Regarding verbs, a promotes verb positively reinforces a performance statement expressed in a sentence, e.g., “increase”;
while an inhibits verb negatively reinforces it, e.g., “decrease”. As modal verbs of possibility are used to denote degrees
of certainty, a no doubt modal verb of possibility expresses certainty, e.g., “can”. A doubt modal verb of possibility expresses
probability or possibility, e.g., “might”. Adverbs of degree tell about the intensity with which something happens. Thus, we
consider affirmation adverbs, e.g., “totally”; doubt adverbs, e.g., “roughly”; strong intensifying adverbs, e.g., “extremely”; and
weak intensifying adverbs, e.g., “slightly”.

To populate the English ontology, instances of candidate concepts were extracted from a pattern description corpus,
which we created from classical books of architectural patterns, e.g. Pattern-Oriented Software Architecture [5], Patterns of
Enterprise Application Architecture [6]. The selected instances were then ranked according to the frequency of individual

180 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

‘ Metric <
Inhibits Metric

Synomym ‘ Antonym ‘

‘ Tactic HPerformance Term ‘%{ Tradeoff ‘
—> is-a

occurrence and co-occurrence with other concepts’ instances. A stop list of general verbs, modal verbs, adverbs, and adjec-
tives frequently mentioned in a corpus of software engineering articles was used to filter out the extracted instances. The
top ranked instances were selected and considered as domain-specific.'

On the other hand, the Performance ontology defines performance-specific concepts. Many of these concepts and their
instances come from (i) software quality models, e.g., Dromey’s quality model [39], Mc Call's quality model [40], ISO/IEC
[41]; (ii) the performance tactics in [42,43], e.g. “concurrency”; (iii) performance metrics, e.g., “throughput” and (iv) well-
known performance trade-offs, e.g., “security” (as it inhibits performance). Fig. 2 shows an excerpt of this ontology.’

Note that the metric concept in this ontology was further categorised into promotes and inhibits metric. Promotes metric
denotes a metric that should be maximised when promoting performance, e.g.,“throughput”. Inhibits metric denotes a metric
that should be minimised when promoting performance, e.g., “overhead time”.

Fig. 2. An excerpt of the Performance ontology.

3.2. Analysing architectural pattern descriptions

Information Extraction deals with the identification and selection of relevant entities and the relationships between them
in order to make them more accessible for further manipulations [15,16]. Unlike Information Retrieval, which concerns
how to identify relevant documents from a document collection, Information Extraction produces structured data ready for
post-processing, which is crucial to many applications of Web mining and searching tools. In most cases these activities
concern processing human language texts by means of natural language processing techniques.

We constructed a computable model in Java to assist software architects to analyse a set of architectural patterns de-
scriptions based on the GATE (General Architecture for Text Engineering) framework [44]. GATE is a well-known suite of
tools used for all sorts of natural language processing tasks including Information Extraction from textual data.

GATE includes a family of processing components for performing various Information Extraction processing tasks such as
tokenisation, semantic annotation or verb phrase chunking. Some of these components are depicted, within the context of
the computable model we built, in Fig. 3 (see the GATE API box).

The computable model implements a pattern analysis process composed of three sequential phases, namely, (i) Corpus
preparation, (ii) the Named entities recognition and (iii) Analysis resolution. Fig. 3 also shows how some of these phases
relate to the GATE processing components. Next these phases are described.

Corpus preparation. The objective of the Corpus preparation phase is to obtain from each pattern description, in a corpus of
architectural patterns description, the morphologic and syntactic structure of each one of its sentences. A sentence
is a sequence of tokens; its beginning is denoted by a token starting with a capital letter and the end by a
newline character or a dot. Tokens are typically complete words, but can also be symbols. As Fig. 3 shows, this
phase is supported by the GATE Tokeniser and Sentence Splitter processing components. The Tokeniser splits text
documents into tokens, annotating the tokens in different categories and storing the length of the token and
other morphologic information such as capitalization. Tokens’ annotations specify what a token of extracted text
represents, e.g., a noun, a verb, an adjective. On the other hand, the Sentence Splitter splits the text into sentences
according to punctuation.

Named entities recognition. The main purpose of this phase is to locate and classify (complex) named entities of interest.
Generally speaking, named entities are elements in text belonging to pre-defined categories or pre-defined linguis-
tic patterns. As shown in Fig. 3, this phase is supported by the OntoGazetteer and the JAPE Transducer processing
components.

In general terms, a Gazetteer is a processing component that finds occurrences of named entities of interest in
text by using a set of lists containing these entities. An OntoGazetteer, or an specialised gazetteer that finds occur-
rences of named entities of interest and annotates them with the corresponding class in the defined ontologies,

1 More information about the domain-specific verbs, modal verbs, adverbs, and adjectives used in this work is available in https://goo.gl/IcTFeH.
2 More information about the performance-specific concepts used in this work is available in https://goo.gl/IcTFeH.

https://goo.gl/IcTFeH
https://goo.gl/IcTFeH

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 181

Corpus of
Architectural Pattern
Descriptions

Computable Model

GATE API

Tokeniser

\L Corpus preparation phase

Sentence Splitter

Ontology <----1 OntoGazetteer

Named entities
\L recognition phase

JAPE Transducer

Annotated
Architectural Pattern
Descriptions

Analysis Resolution

Analysis resolution phase

Set of Promotes Sentences
Set of Inhibits Sentences
Resolutions

Data flow

Uses

Fig. 3. Elements of the computable model for analysing pattern descriptions and their relation to the phases of the pattern analysis process.

is used in this work. For example, the named entity “concurrency” could be annotated with the “tactic” class in
the performance ontology since “concurrency” is-a “tactic” in this ontology. Similarly, the named entity “increase”
should have been annotated with the “promotes verb” class in the English ontology since “increase” is-a “verb”
and this verb is-a “promotes verb” in this ontology.

In this work, complex entities of interest denote complete sentences, or sentence fragments, attending some
specific structure. Thus, the recognition of these sentences is based on linguistic patterns and performed by the
JAPE Transducer, which is a processing component that executes JAPE (Java Annotation Patterns Engine) grammars.
JAPE is a pattern matching language that uses regular expressions to match linguistic patterns found in annotations
on text documents.

Two sets of custom JAPE grammar rules have been defined: the promotes and the inhibits sets. These sets
contain rules whose objective is to analyse architectural pattern descriptions with regard to whether they contain
sentences about performance being promoted or inhibited, respectively. The promotes set contains eight rules
and the inhibits set contains five rules. All the rules in these sets refer to the annotations generated by the
OntoGazetteer, and evaluate the English and Performance ontologies.

A JAPE rule consists of a left-hand-side (LHS) and a right-hand-side (RHS) separated by an arrow (—— >). The
LHS specifies the pattern to look for in the text and the RHS specifies statements to produce new annotations
out of the detected patterns. To illustrate the former, consider the following excerpt of an architectural pattern
description, which indicates that it promotes performance:

182 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

“...such a configuration can further increase system performance and throughput, as some filter instances can...”

Looking at the English grammar concepts in this sentence as well as the ones defined in the ontologies, this
sentence could be rewritten as follows:

“...such a configuration no_doubt_modal_verb_of possibility conjunction promotes_verb system performance
conjunction promotes_metric, as some filter instances can ...”

The following is an example of one of the JAPE rules contained in the promotes set. This rule detects whether
a sentence in a pattern description contains the linguistic pattern in the rewritten sentence above:

Options : control = appelt

1

2 Rule : promotes_01

3«

4 (

5 { No_Doubt_Modal_Verb_Possibility }

6 { Conjunction }?

7)

8 { Promotes_Verb }

9 (

10 { Token.kind==word, Token.string == ‘‘system’’ } |
11 { Token.kind==word, Token.string == ‘‘application’’ }
12) 2

13 { Performance }

14 (

15 { Conjunction }

16 { Promotes_Metric }

17) 2

18)

19 : prom_01
20 -->
21 : prom_01 . promotes = { kind = ‘‘NDMVP-PV-P-PM’’, rule = ‘‘promotes_01’’ }

This rule uses the matching style “appelt” (line 1), which defines how to deal with annotations that
overlap or where multiple matches are possible for a particular sequence, e.g., from all the rules that
match a region of the description starting at some point, the one which matches the longest region is
fired. The rule is entitled “promotes_01" (line 2), and it will match text starting with a modal verb
with a “No_Doubt_Modal_vVerb_Possibility” annotation (line 5), followed optionally by a token with a
“Conjunction” annotation (line 6). Then, a verb with a “Promotes_verb” annotation is required (line 8), fol-
lowed optionally by a “system” or “application” token (lines 9-12). A token with a “Performance” occurring
after it is also required (line 13). The rule also specifies that the “Performance” annotation be followed by op-
tional text annotated as “Conjunction” and “Promotes_Metric” (lines 14-17). Once this rule has matched a
sequence of text, the entire sequence is allocated a label by the rule. In this case, the label is “prom_01" (line 19).
On the RHS (line 21), this span of text is referred using the label given in the LHS, “prom_01". It is said that
the pattern specified by this rule will be awarded an annotation of type “promotes”. This annotation allows,
for example, the recovery of all the sentences containing a promotes pattern. “kind” is an attribute of this rule
with the value set to “NpMvP-PV-P-PM” which denotes a specific combination of ontology concepts, i.e., no doubt
modal verb of possibility (NDMVP), promotes verb (PV), performance (P) and promotes metric (PM). This attribute
is particularly useful in the analysis resolution phase (described next). “rule” is another attribute of this rule with
the value set to “promotes_01"; the purpose of the “rule” attribute is simply to ease the process of manual rule
validation.

Analysis resolution. The main objective of the Analysis resolution phase is to deliver, for each analysed architectural pat-
tern in the corpus, the promotes and inhibits sentences sets identified in the Named entities recognition phase.
A resolution on whether each one of these patterns promotes or inhibits performance is also given. As shown in
Fig. 3, this phase is supported by the Analysis Resolution component. This is a built-in component implementing
the computational logic required in this phase.

For each pattern, the resolution on whether it promotes or inhibits performance is supported by comparing the
values of two aggregate scores obtained from applying a scoring function to the promotes sentences and inhibits
sentences sets respectively. For example, if the resolution is that the analysed architectural pattern promotes per-
formance, then the value of the aggregate score of the promotes sentences set should be higher than the value
of the aggregate score of the inhibits sentences set. As explained in Section 3.2 all these sentences can be easily
identified via the annotation types “promotes” or “inhibits”.

The defined scoring function takes as input the concept combination of a sentence and returns a value between
0 and 1. This value denotes the degree of certainty about the fact that the sentence is telling performance is being
promoted (0 denotes a minimum degree of certainty and 1 denotes a maximum degree of certainty). Considering
the former, the aggregate score value aggScore obtained from applying a scoring function score to, for example, the
set of promotes sentences can be defined as follows:

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 183

n
aggScore = Zscore(concept_combination_kind,-)
i=1
where: concept_combination_kind is the value of the “kind” attribute of the sentence i in the promotes set.
In the language of architectural patterns, promotes or inhibits verbs like “increase” or “decrease” by themselves
are meaningless. In this case, what these verbs mean depends on whether they precede or go after certain other
concepts. Consider, for example, the following sentence fragments:

Sentence 1: ...can increase throughput ...
Sentence 2: ...might increase throughput ...
Sentence 3: ...can increase overhead time ...
Sentence 4: ...might increase overhead time ...

Regarding promoting performance, sentences 1 and 2 should be scored differently as, despite the fact that both
include the promotes verb “increase”, the “might” modal verb of possibility in the latter sentence makes it denote
a slight possibility of promoting rather than inhibiting. Note also that, despite the fact that both sentences 3 and 4
include the promotes verb “increase”, they actually describe performance being inhibited because of the occurrence
of the inhibits metric “overhead time”. As explained in Section 3.1, an inhibits metric should be minimised when
promoting performance.

The following are examples of score functions for the concept combinations appearing in the sentences
lines 1-4:

Sentence 1: score(NDMVP — PV — PM)
Sentence 2: score(DMVP — PV — PM)
Sentence 3: score(NDMVP — PV — IM)
Sentence 4: score(DMVP — PV — IM)

where:
NDMVP and NDMVP are a no doubt and a doubt modal verb of possibility, respectively.
PV is a promotes verb.
PM and IM are a promotes and an inhibits metric, respectively.

The rationale for assigning scores to a concept combination is based on the approaches described in [33,34].
In general terms, the score of a concept combination is calculated by aggregating the scores of its individual
concepts. In our work, the scores of individual concepts are fixed pre-defined values obtained from three senior
software architects. The average is used to obtain the score of a concept. Some example scores we obtained are
score(NDMVP) = .84 and score(DMVP) = .22.

4. Evaluation and discussion of results

Having created a computable model for analysing architectural pattern descriptions, an evaluation to assess it was ap-
plied. In order to do that, we adopted a classical evaluation approach for information extraction systems [16,15]. In general
in this evaluation a system is assessed in order to see how it behaves with regard to an exemplar of the ideal analysis’s
output and how it compares to humans performing the same task. Thus, we assessed the defined computational model to
see how it behaved with regard to an exemplar of the ideal analysis’ outputs and how it compared to both inexperienced
and experienced software architects performing the same analysis task.

In what follows, we provide the details of this evaluation and discuss the obtained results. For clarity and length, the
focus in this section is on the performance quality attribute.

4.1. Evaluation

Participants Three groups of fifteen people each participated in this evaluation (forty-five participants in total). The first
group, called Undergraduates, consisted of fourth-year students of a Software Engineering undergraduate program. The sec-
ond group, called Masters, consisted of second-year students in a Software Engineering master’s degree program. The third
group, which is called Professionals, consisted of junior software developers in a software development company graduated
mostly from Computer Science programs.

The participants inclusion criteria capture the attributes that we expect the inexperienced software architects that are
potential users of the proposed approach should have, see Table 2. The reasons of having three groups are: (i) we have
access to both, students of these two academic programs and junior software developers in a software company and (ii) in
these communities are people meeting the inclusion criteria. The size of these groups was meanly driven by the availability
of junior software developers in the software company. It was hard to get more than fifteen software developers and
we wanted to keep the groups’ size the same. While fifteen participants per condition is not a large enough sample to
overcome variation in measurements, we believe it is a reasonable number to start with, provided the types of metrics we
estimated.

184 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

Table 2
Participants profiles.
Years of design experience Number and type of projects Knowledge and Activities
Undergraduates 1to3 1 to 4 undergraduate level projects. Know some design patterns. Have contributed to
define the design of these projects.
Masters 1to3 1 to 4 graduate level projects. Know some design patterns. Have contributed to
define the design of these projects.
Professionals 1to3 1 to 4 industry projects. Know some design patterns. Have contributed to

define the design of these projects.

Data set Some of the metrics used in this evaluation only can be calculated if a gold standard is available against which the
analyses’ outputs are compared. A gold standard is an exemplar of the ideal analysis’ outputs. In this work, the gold standard
was created by a senior architect with more than ten years’ experience. The gold standard included ten architectural pattern
descriptions. The length of each pattern ranged from two to three pages. Three of them were written by different authors;
seven corresponded to patterns promoting performance.

The definition of the gold standard’ size was driven by considering the length of each pattern as well as existing guide-
lines on task duration in controlled experiments of software engineering tools with human participants, e.g., [45]. Based
on an average of four minutes per page, if a two-page pattern takes a total of eight minutes to read and understand, ten
pattern descriptions would require less than two hours.

Analyses In this evaluation, two types of analyses were performed: a manual analysis and an automated analysis. The manual
analysis was performed by the three groups of people described in Section 4.1. The automated analysis was performed by
the constructed computational model described in Section 3.2.

In the manual analysis we asked the participants to read the set of 10 pattern descriptions, contained in the gold
standard, and provide a resolution for each one on whether it promotes or inhibits performance. Reading the pattern and
providing a resolution are tasks that inexperienced architects will do in practice for pattern selection. These tasks were
performed in three stages that correspond to scenarios with different levels of difficulty.

Stage 1. Reading one pattern description. This pattern promoted performance.

Stage 2. Reading three patterns descriptions, of the same pattern, written by different authors. The pattern promoted per-
formance.

Stage 3. Reading six patterns descriptions, of different patterns, written by the same author. Four of these patterns promoted
performance; two patterns did not.

We also asked the participants to underline the sentences that they considered to be indicating whether performance was
promoted or inhibited.

For the automatic analysis the computational model was executed on the same set of ten pattern descriptions used in
the manual analysis.

Employed metrics In order to evaluate the outputs of both the manual analysis and the automated analysis, two metrics
were employed: time and recall.

The time metric was used to measure the time spent performing the analyses of the architectural pattern descriptions.
Recall is a well-known information retrieval/extraction metric [46]. Recall represents the ratio of correctly identified infor-
mation items to the total number of correct information items in a data set. In the context of this work, recall measures
how many of the correct promotes and inhibits sentences in the data set are identified. A high recall value is specific to an
analysis capable of identifying most of the correct sentences in the data set. Any correct sentence in the data set that is not
identified will decrease the recall value. In our context, recall important because we want to find all correct promotes and
inhibits sentences in pattern descriptions.

4.2. Discussion of results

In this section we discuss the metrics values obtained by three groups, namely Undergraduates, Masters and Profession-
als, when performing manual analyses of patterns. The results of the automated analyses are also discussed.

Fig. 4 shows the time spent in the Stage 1 of the manual analysis. As can be observed, medians are about the same
in the three groups, i.e.,, 9 and 10 minutes. The minimum recorded time for analysing one pattern was 6 minutes for the
Undergraduates group and 3 minutes for both the Masters and Professionals groups. On the other hand, the maximum time
for analysing one pattern was 18 minutes for the Undergraduates group, 14 minutes for the Masters group and 12 minutes
for the Professionals group. In the figure it is also observed that the time data distribution of the Undergraduates group is
notoriously positively skewed, meaning that the time data constitute higher frequency of high value times. On the contrary,
the time data distribution of the Professionals group is negatively skewed, meaning that the time data constitute higher
frequency of low value times.

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 185

n |
® :
Q
2
£ ;
£ :
£ 24
(0]
£
= :
o
T T T
Undergraduates Masters Professionals
Type of Participants
Fig. 4. Analysis time values obtained in Stage 1.
Table 3
Recall values obtained in Stage 1.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Undergraduates .86 57 .29 .86 71 .57 71 1 .57 .86 .57 .86 71 1 1
Masters 1 .60 .53 33 40 .80 .60 93 1 .20 1 .67 A7 73 1
Professionals 75 5 .65 .85 .60 .60 .60 1 .85 45 1 1 75 40 1
Table 4
Average and standard deviation values for analysis time and recall metrics obtained in Stage 1, for both manual and automated analyses.
Manual Analysis (average) Manual Analysis (standard deviation) Automated Analysis
Analysis Time Undergraduates 660 sec 231 sec 40 sec
Analysis Time Masters 480 sec 197 sec
Analysis Time Professionals 420 sec 140 sec
Recall Undergraduates 74 .20 .96
Recall Masters .68 27
Recall Professionals 73 21

Table 3 shows the recall values obtained in Stage 1. As can be seen, eleven participants obtained perfect values for recall:
P8, P14 and P15 from the Undergraduates group; P8, P11, P12 and P15 from the Masters group; P1, P9, P11, P15 from the
Professionals group. That is, eleven out of forty five participants recovered all existing relevant sentences.

Table 4 shows the average and standard deviation values for analysis time and recall metrics obtained by the participants
in Stage 1. The table also shows the values for analysis time and recall obtained by performing the automated analysis. It
should be noted that the automated analysis increased recall and reduced analysis time in comparison to the manual
analysis. In this stage, all the participants resolved correctly that the analysed pattern promoted performance. The resolution
was the same for the automated analysis.

Fig. 5 shows the time spent in Stage 2 of the manual analysis. As can be observed, the median tends to decrease in each
group, i.e., 31, 28 and 25 minutes. The minimum recorded time for analysing three descriptions of the same pattern written
by different authors was 17 minutes for the Undergraduates group and 14 minutes for both the Masters and Professionals
groups. On the other hand, the maximum analysis time in this stage was 55 minutes for the Undergraduates group, 38
minutes for both the Masters group and 35 minutes for the Professionals group. In the figure it is also observed that the time
data distribution of the Undergraduates group is positively skewed, meaning that the time data constitute higher frequency
of high value times. On the contrary, the time data distribution of the Masters and Professionals group is negatively skewed,
meaning that the time data constitute higher frequency of low value times.

The values for recall in Stage 2 are shown in Table 5. Thirteen participants, out of forty five, recovered all existing
relevant sentences in the analysed pattern descriptions: P1, P9, P11 and P15 from the Undergraduates group; P1, P6, P9,
P11, P13, P14, P15 from the Masters group; P10, P15 from the Professionals group.

Table 6 shows the average and standard deviation values for analysis time and recall metrics obtained by the participants
in Stage 2. The values of recall decreased compared to Stage 1, indicating that students performed less well when analysing
heterogeneous pattern descriptions. The same situation happened with the automated analysis. However, the automated
analysis achieves better recall and time values in comparison to the manual analysis. In this stage, thirteen participants

186 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

o |
re}
8 g
>
£
€
£
)
E 8 A
'_
o |
«
T T T
Undergraduates Masters Professionals
Type of Participants
Fig. 5. Analysis time values obtained in Stage 2.
Table 5
Recall values obtained in Stage 2.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Undergraduates 1 .60 .53 33 40 .80 .60 93 1 .20 1 .67 47 73 1
Masters 1 67 93 .93 .93 1 47 .93 1 40 1 .53 1 1 1
Professionals .73 .53 .60 .53 33 47 33 .20 .53 1 47 .40 93 .80 1
Table 6
Average and standard deviation values for analysis time and recall metrics obtained in Stage 2, for both manual and automated analyses.
Manual Analysis (average) Manual Analysis (standard deviation) Automated Analysis
Analysis Time Undergraduates 33 min 10.7 min 56 sec
Analysis Time Masters 25 min 8.5 min
Analysis Time Professionals 23 min 6.9 min
Recall Undergraduates .68 27 77
Recall Masters 85 22
Recall Professionals .59 .25
Table 7
Recall values obtained in Stage 3.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Undergraduates 1 1 71 .57 .57 29 1 71 1 .86 .86 71 .86 57 71
Masters .73 .53 .60 .53 33 47 33 .20 .53 1 47 40 .93 .80 1
Professionals 1 15 25 .25 35 .50 35 1 40 45 1 1 .70 .75 1

resolved that analysed pattern promoted performance and it was correct. One participant resolved that it did not. One
participant resolved that he did not know. The automated analysis resolved that the pattern promoted performance.

Fig. 6 shows the time spent in Stage 3 of the manual analysis which consisted in analysing six different pattern descrip-
tions written by the same author. As can be seen, the median tends to decrease in each group, i.e., 35, 32 and 27 minutes.
The minimum recorded time for the analysis was 24 minutes for the Undergraduates group, 16 minutes for the Masters
group and 21 minutes for the Professionals group. On the other hand, the maximum analysis time in this stage was 44
minutes for the Undergraduates group, and 35 minutes for the Masters group and 36 minutes for the Professionals group.
Regarding the time data distribution, it can be seen that Undergraduates group’s data is positively skewed, meaning that
the time data constitute higher frequency of low value times. On the contrary, Masters group’s data is negatively skewed,
meaning that the time data constitute higher frequency of low value times

Regarding recall, Table 7 shows that ten participants recovered all existing relevant sentences: P1, P2, P7, P9 Undergrad-
uates group; P10, P15 from the Masters group; P8, P11, P12, P15 Professionals group.

Table 8 shows the average and standard deviation values for analysis time and recall metrics obtained by the participants
in Stage 3. In general, the values of recall decreased compared to Stage 2. The values for analysis time and recall obtained
by the automated analysis were better in comparison to the manual analysis. However, recall is not a great deal better,

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 187

o}
<

o
<

35

30

Time in minutes

25

20
|

15

T T T
Undergraduates Masters Professionals

Type of Participants

Fig. 6. Analysis time values obtained in Stage 3.

Table 8
Average and standard deviation values for analysis time and recall metrics obtained in Stage 3, for both manual and automated analyses.
Manual Analysis (average) Manual Analysis (standard deviation) Automated Analysis
Analysis Time Undergraduates 35 min 6 min 75 sec
Analysis Time Masters 28 min 6.4 min
Analysis Time Professionals 28 min 4.4 min
Recall Undergraduates .76 .20 75
Recall Masters .59 .25
Recall Professionals .55 33

which exposed some limitations in the defined JAPE grammar rules. However, in the automated analysis the resolution on
whether the analysed patterns promoted or inhibited was correct for all of them. This was not the case for manual analysis.

4.3. Other aspects to consider

In previous sections we have shown that the proposed approach exposes good characteristics. However, the nature of
the techniques utilised makes it having some intrinsic limitations that are important to discuss. Next we do it.

In this work we used an ontology to define relevant concepts that are expected to be discovered in textual pattern
descriptions. Ontologies can be created adopting one (or more) of the following methods: manual, semi-automatic and
automatic [47]. In this work the ontology was created manually by two domain experts. This process required a considerable
amount of time and effort.

Similarly in this work we used JAPE rules to analyse architectural pattern descriptions with regard to whether they
contain sentences about performance being promoted or inhibited. The definition of JAPE rules was also a time-consuming
process as the rules were created manually by the same two domain experts. In this case, it does not seem possible to
define these rules in a (semi-) automatic manner.

Both processes, ontology and JAPE rules definition, took the domain experts four months in total. However, this time
was required only once and the resulting ontology and rules were reused many times to analyse a variety of architectural
pattern descriptions; including domain-specific ones.

5. Conclusions and future work

In this paper we described an approach, based on knowledge representation and information extraction, to automate
the analysis of architectural pattern descriptions with respect to specific quality attributes. The approach aims to help
inexperienced software architects with determining whether specific quality attributes are promoted or inhibited, which is
useful for pattern selection during architectural design. Through experimentation, it was shown that the approach exhibited
good performance and recall.

Several efforts have been oriented towards providing tools and frameworks to help architects during architectural design.
However, the proposed approach differs from them in that (i) it focuses on supporting quality attribute-oriented pattern
selection during the design process; (ii) it is not limited to the use of a pre-defined and closed pattern repository and (iii) it
does not require an extensive specification of the design problem. Because of the former, it can be easily integrated into
existing architectural design methods such as Rozanski and Woods’ [3], ADD [1] and Microsoft’s Technique for Architecture

188 P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189

and Design [4]. Furthermore, our approach can deal with new pattern types without significant work, as the descriptions of
these new patterns do not contain a significant number of new concepts.

Future work focuses on the following areas: (i) considering combinations of quality attributes; (ii) improving the JAPE
rules; (iii) improving the sentence scoring approach, (iv) automating ontology population, (v) improving tool support. Further
details are provided next.

In real life, architectural design requires considering a number of quality attribute requirements. Depending on the sys-
tem, these attributes could have different meanings and importance. In its current version, the described approach considers
quality attributes in an isolated manner. That is, it does not support pattern analysis with respect to multiple quality at-
tribute requirements. For example, in some situations the architect could require a pattern promoting performance and
security, but prefer maximising performance, perhaps at the expense of security. The notion of utility preferences, as in util-
ity theory [48], to specify priorities between the quality attributes could allow a pattern analysis in a “utility-theoretic”
way.

As shown in Table 8 the values for time and recall metrics obtained by the automated analysis in Stage 3 were not much
better in comparison to the manual analysis, due to some limitations in the defined JAPE grammar rules. We are currently
analysing these metrics in order to identify a set of general shortcomings and define a set of possible improvements.

Regarding improving the sentence scoring approach, future investigation might look into other ways of sentence scoring
to cover other concepts in the ontology, and determine how best to scale up the speed of analysis without sacrificing recall.

In our approach, ontology building required a considerable amount of time and effort, as it was performed manually by
domain experts. Despite having a “stable” version of the ontology, because of the incredible speed with which knowledge
develops in the real world, having an “up to date” version is a never-ending goal. To overcome this problem, many methods
to automatically or semi-automatically supplement extant concepts from corpus data have been developed, e.g., [49,47,50].
We are currently studying these approaches.

Finally, the approach presented in this paper is automated by computable model that works as a prototype tool. We have
performed some user tests of our tool with junior software developers in a software development company. Future work
includes performing more tests and attending the resulting feedback in order to improve the tool and make it publically
available.

References

[1] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, W. Wood, Attribute-Driven Design (ADD), Version 2.0, Tech. Rep. CMU/SEI-2006-TR-023,
Software Engineering Institute, Carnegie Mellon University, 2006, http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147.
[2] A. Lattanze, Architecting Software Intensive Systems: A Practitioners Guide, 1st edition, Auerbach Publications, 2008.
[3] N. Rozanski, E. Woods, Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives, Addison-Wesley Professional,
2005.
[4] M. Patterns, Microsoft Application Architecture Guide, 2nd edition, Microsoft Press, 2009.
[5] E. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-oriented Software Architecture: A System of Patterns, John Wiley & Sons, Inc.,
1996.
[6] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman Publishing Co., Inc., 2002.
[7] T. Erl, SOA Design Patterns, 1st edition, Prentice Hall PTR, 2009.
[8] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services, 1st edition, Addison-Wesley Profes-
sional, 2011.
[9] N. Sawant, H. Shah, Big Data Application Architecture Q&A: A Problem - Solution Approach, 1st edition, Apress, 2013.
[10] S. R. International, Speed Reading Facts, http://www.execuread.com/facts/, 2015.
[11] D. Miner, A. Shook, MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems, 1st edition, O'Reilly Media,
Inc., 2012.
[12] A. Homer,]. Sharp, L. Brader, M. Narumoto, T. Swanson, Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud Applications, Microsoft
Patterns and Practices, 2014.
[13] B. Aliaksandr, A survey of existing approaches for pattern search and selection, in: Proceedings of the 15th European Conference on Pattern Languages
of Programs, ACM, New York, NY, USA, 2010, pp. 1-13.
[14] R. Brachman, H. Levesque (Eds.), Readings in Knowledge Representation, Morgan Kaufmann Publishers Inc., 1985.
[15] M. Pazienza, Information Extraction: Towards Scalable, Adaptable Systems, Information Extraction: Towards Scalable, Adaptable Systems, vol. 1714,
Springer, 1999.
[16] J. Cowie, W. Lehnert, Information extraction, Commun. ACM 39 (1) (1996) 80-91.
[17] C. Dhaya, G. Zayaraz, Development of multiple architectural designs using ADUAK, in: Proceedings of the International Conference on Communications
and Signal Processing, 2012, pp. 93-97.
[18] M. Barbacci, R. Ellison, A. Lattanze,]. Stafford, C. Weinstock, W. Wood, Quality attribute workshops (qaws), Tech. Rep. CMU/SEI-2003-TR-016, Software
Engineering Institute, Carnegie Mellon University, 2003.
[19] E Jabali, S. Sharafi, K. Zamanifar, A quantitative algorithm to select software architecture by tradeoff between quality attributes, Proc. Comput. Sci. 3
(2011) 1480-1484.
[20] H. Hadaytullah, S. Vathsavayi, O. Raiha, K. Koskimies, Tool support for software architecture design with genetic algorithms, in: Proceedings of the Fifth
International Conference on Software Engineering Advances, IEEE Computer Society, 2010, pp. 359-366.
[21] P. Pelliccione, P. Inverardi, H. Muccini, CHARMY: A framework for designing and verifying architectural specifications, IEEE Trans. Softw. Eng. 35 (3)
(2009) 325-346.
[22] S. E. Institute, ArchE-the Architecture Expert, http://www.sei.cmu.edu/library/abstracts/news-at-sei/architect200705.cfm, 2007.
[23] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining pattern languages and reusable architectural decision models into a comprehensive
and comprehensible design method, in: Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture, IEEE Computer Society, 2008,
pp. 157-166.
[24] M. Weiss, A. Birukou, Building a pattern repository: benefitting from the open, lightweight, and participative nature of wikis, in: Proceedings of the
Wiki4SE-Wikis for Software Engineering Workshop, 2008.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4C617474616E7A653A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib526F7A616E736B693A3035s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib526F7A616E736B693A3035s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4D6963726F736F66743A3039s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42757363686D616E6E26616C3A3936s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42757363686D616E6E26616C3A3936s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib466F776C65723A3032s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib45726C3A3039s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib446169676E6561753A3131s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib446169676E6561753A3131s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib536177616E743A3133s1
http://www.execuread.com/facts/
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4D696E65723A32303132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4D696E65723A32303132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib426972756B6F753A3130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib426972756B6F753A3130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42726163686D616E3A3835s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib70617A69656E7A613A31393939s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib70617A69656E7A613A31393939s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib436F7769653A31393936s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib44686179613A3132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib44686179613A3132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42617262616363693A3033s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42617262616363693A3033s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4A6162616C693A3131s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4A6162616C693A3131s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib486164617974756C6C61683A32303130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib486164617974756C6C61683A32303130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib50656C6C696363696F6E653A3039s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib50656C6C696363696F6E653A3039s1
http://www.sei.cmu.edu/library/abstracts/news-at-sei/architect200705.cfm
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5A696D6D65726D616E6E3A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5A696D6D65726D616E6E3A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5A696D6D65726D616E6E3A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib57656973733A32303038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib57656973733A32303038s1

P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176-189 189

[25] M. Galster, A. Eberlein, M. Moussavi, Systematic selection of software architecture styles, IET Softw. 4 (5) (2010) 349-360.

[26] H. Kampffmeyer, S. Zschaler, Finding the pattern you need: the design pattern intent ontology, in: Model Driven Engineering Languages and Systems,
in: Lecture Notes in Computer Science, vol. 4735, Springer, Berlin, Heidelberg, 2007, pp. 211-225.

[27] N.-L. Hsueh, J.-Y. Kuo, C.-C. Lin, Object-oriented design: a goal-driven and pattern-based approach, Softw. Syst. Model. 8 (1) (2009) 67-84.

[28] D.-K. Kim, C. El Khawand, An approach to precisely specifying the problem domain of design patterns, J. Vis. Lang. Comput. 18 (6) (2007) 560-591.

[29] S.M.H. Hasheminejad, S. Jalili, Design patterns selection: an automatic two-phase method, J. Syst. Softw. 85 (2) (2012) 408-424.

[30] S. Pearson, Y. Shen, Context-aware privacy design pattern selection, in: Proceedings of the 7th International Conference on Trust, Privacy and Security
in Digital Business, Springer-Verlag, 2010, pp. 69-80.

[31] M. Weiss, H. Mouratidis, Selecting security patterns that fulfill security requirements, in: Proceedings of the 16th IEEE International Requirements
Engineering Conference, IEEE Computer Society, 2008, pp. 169-172.

[32] S. C. for Biomedical Informatics Research, Protege, http://protege.stanford.edu/, 2014.

[33] F. Benamara, C. Cesarano, A. Picariello, D. Reforgiato, V.S. Subrahmanian, Sentiment analysis: adjectives and adverbs are better than adjectives alone,
in: Proceedings of the International Conference on Weblogs and Social Media, ICWSM, AAAI Press, 2007, pp. 203-206.

[34] V.S. Subrahmanian, D. Reforgiato, AVA: Adjective-Verb-Adverb combinations for sentiment analysis, IEEE Intell. Syst. 23 (4) (2008) 43-50.

[35] K.S. Kipper, Verbnet: a broad-coverage, comprehensive verb lexicon, Ph.D. thesis, aAI3179808, 2005.

[36] K. Jassem, Semantic classification of adjectives on the basis of their syntactic features in Polish and English, Mach. Transl. 17 (1) (2002) 19-41,
http://dx.doi.org/10.1023/A:1025512525185.

[37] B. Levin, English Verb Classes and Alternations: A Preliminary Investigation, University of Chicago Press, 1993.

[38] G. Miller, WordNet: a lexical database for English, in: Proceedings of the Workshop on Human Language Technology, HLT '93, Association for Compu-
tational Linguistics, 1993, p. 409.

[39] R. Dromey, A model for software product quality, IEEE Trans. Softw. Eng. 21 (2) (1995) 146-162.

[40] J. McCall, Factors in Software Quality: Preliminary Handbook on Software Quality for an Acquisition Manager, vol. 1, General Electric, 1977.

[41] SO, ISO/IEC 9126-1:2001, Software engineering — Product quality - Part 1: Quality model, Tech. rep., International Organization for Standardization,
2001.

[42] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd edition, Addison-Wesley Professional, 2003.

[43] J. Ramachandran, Designing Security Architecture Solutions, John Wiley & Sons, Inc., 2002.

[44] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, GATE: An architecture for development of robust hlt applications, in: Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ACL '02, Association for Computational Linguistics, 2002, pp. 168-175.

[45] AJ. Ko, T.D. Latoza, M.M. Burnett, A practical guide to controlled experiments of software engineering tools with human participants, Empir. Softw.
Eng. 20 (1) (2015) 110-141.

[46] CJ.V. Rijsbergen, Information Retrieval, 2nd edition, Butterworth-Heinemann, 1979.

[47] Edward H.Y. Lim, James N.K. Liu, Raymond S.T. Lee, Knowledge Seeker - Ontology Modelling for Information Search and Management, Intelligent
Systems Reference Library, Springer-Verlag, Berlin, Heidelberg, 2011.

[48] P. Fishburn, Utility Theory for Decision Making, Publications in Operations Research, Wiley, 1970, http://books.google.com/books?id=3CFwQgAACAA].

[49] W. Shen, J. Wang, P. Luo, M. Wang, A graph-based approach for ontology population with named entities, in: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, ACM, 2012, pp. 345-354.

[50] C. Giuliano, A. Gliozzo, Instance-based ontology population exploiting named-entity substitution, in: Proceedings of the 22nd International Conference
on Computational Linguistics - Volume 1, Association for Computational Linguistics, 2008, pp. 265-272.

http://refhub.elsevier.com/S0167-6423(16)00010-1/bib47616C737465723A3130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4B616D7066666D657965723A3037s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4B616D7066666D657965723A3037s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib48737565683A3039s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4B696D3A32303037s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib48617368656D696E656A61643A32303132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib50656172736F6E3A32303130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib50656172736F6E3A32303130s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib57656973733A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib57656973733A3038s1
http://protege.stanford.edu/
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42656E616D6172613A3037s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib42656E616D6172613A3037s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5375627261686D616E69616E3A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib536368756C65723A3035s1
http://dx.doi.org/10.1023/A:1025512525185
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib6C6576696E3A3933s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4D696C6C65723A3933s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4D696C6C65723A3933s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib44726F6D65793A3935s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib6D6363616C6C3A3737s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib69736F393132363A3031s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib69736F393132363A3031s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4261737326616C3A3132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib52616D616368616E6472616E3A3032s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib43756E6E696E6768616D3A3032s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib43756E6E696E6768616D3A3032s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4B6F3A32303135s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4B6F3A32303135s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib52696A7362657267656E3A3739s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4C696D3A3131s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4C696D3A3131s1
http://books.google.com/books?id=3CFwQgAACAAJ
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5368656E3A32303132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib5368656E3A32303132s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4769756C69616E6F3A3038s1
http://refhub.elsevier.com/S0167-6423(16)00010-1/bib4769756C69616E6F3A3038s1

	Knowledge representation and information extraction for analysing architectural patterns
	1 Introduction
	2 Related work
	3 The proposed approach
	3.1 Deﬁning the domain concepts
	3.2 Analysing architectural pattern descriptions

	4 Evaluation and discussion of results
	4.1 Evaluation
	4.2 Discussion of results
	4.3 Other aspects to consider

	5 Conclusions and future work
	References

