
Resolving Data Mismatches in End-User Compositions

Perla Velasco-Elizondo1, Vishal Dwivedi2, David Garlan2, Bradley Schmerl2,
and José Maria Fernandes3

1 Autonomous University of Zacatecas, Zacatecas, ZAC, 98000, Mexico
pvelasco@uaz.edu.mx

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
{vdwivedi,garlan,schmerl}@cs.cmu.edu

3 IEETA/DETI, University of Aveiro, 3810-193 Aveiro, Portugal
jfernan@ua.pt

Abstract. Many domains such as scientific computing and neuroscience require
end users to compose heterogeneous computational entities to automate their pro-
fessional tasks. However, an issue that frequently hampers such composition is
data-mismatches between computational entities. Although, many composition
frameworks today provide support for data mismatch resolution through special-
purpose data converters, end users still have to put significant effort in dealing
with data mismatches, e.g., identifying the available converters and determining
which of them meet their QoS expectations. In this paper we present an approach
that eliminates this effort by automating the detection and resolution of data mis-
matches. Specifically, it uses architectural abstractions to automatically detect
different types of data mismatches, model-generation techniques to fix those mis-
matches, and utility theory to decide the best fix based on QoS constraints. We
illustrate our approach in the neuroscience domain where data-mismatches can
be fixed in an efficient manner on the order of few seconds.

1 Introduction

Computations are pervasive across many domains today, where end users have to com-
pose heterogeneous computational entities to perform and automate their professional
tasks. Unlike professional programmers, these end users have to write compositions
to support the goals of their domains, where programming is a means to an end, but
not their primary expertise [10]. Such end users, often form large communities that
are spread across various domains, e.g., Bioinformatics [23], Intelligence Analysis [26]
or Neurosciences.1 End users in these communities often compose computational en-
tities to automate their tasks and in silico2 experiments. This requires them to work
within their domain-specific styles of construction, following the constraints of their
domain [8]. They often treat their computations and tools as black boxes, that can be
reused across various tasks. Developers in these domains have been using approaches
based on Service-Oriented Architecture (SOA) [9] to enable rapid composition of com-
putations from third-party tools, APIs and services. There exist large repositories of

1 http://neugrid4you.eu
2 Tasks performed on computer or via computer simulation.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 120–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://neugrid4you.eu

Resolving Data Mismatches in End-User Compositions 121

Table 1. Common types of data mismatches

Type Description

DataType Results from conflicting assumptions on the signature of the data and the compo-
nents that consume it, e.g., a computation requires different data type.

Format Results from conflicting assumptions on the format of the data being interchanged
among the composed parts, e.g., xml vs. csv (comma separated values).

Content Results from conflicting assumptions on the data scope of the data being inter-
changed among components, e.g., the format of the output carries less data content
than is required by the format of the subsequent input.

Structural Results from conflicting assumptions on the internal organization of the data being
interchanged among the composed parts, e.g., different coordinates system such as
Polar vs. Cartesian data or different dimensions such as 3D vs. 4D.

Conceptual Results from conflicting assumptions on the semantics of the data being inter-
changed among the composed parts, e.g., brain structure vs. brain activity or dis-
tance vs. temperature.

reusable services such as BioCatalogue, BIRN and INCF,3 and supporting domain-
specific environments to compose them, e.g., Taverna [11] and LONI Pipeline.4

However, despite the popularity of such composition environments and repositories,
the growing number of heterogeneous services makes composition hard for end users
across these domains. Often end users have to compose computational entities that have
conflicting assumptions about the data interchanged among them (as shown in Table
1).5 That is, it is common for their inputs and outputs to be incompatible with those
of the other computational entities with which they must be composed. This claim is
supported by recent studies that have shown that about 30% of the services in scientific
workflows are data conversion services [28]. Some composition frameworks today pro-
vide data mismatch detection facilities and special-purpose data converters that can be
inserted at the point of the mismatch. In spite of this, data mismatch detection and res-
olution continues to be time-consuming and error-prone for the following reasons: (a)
most current composition environments detect only type mismatches, while other mis-
matches are often undetected (e.g., format, content, structural, and conceptual), (b) due
to the prevalence of converters in repositories such as BioCatalogue or BIRN, end users
frequently have several converters to select from, often manually, (c) instead of a single
converter, a solution might involve a combination of converters. This results in a com-
binatorial explosion of possibilities, and (c) among several repair alternatives, end users
need to choose the best one with respect to multiple QoS concerns, e.g., accuracy, data
loss, distortion. Today, this assessment is done by “trial and error,” a time-consuming
process often leading to non-optimal solutions.

The key contribution of this work is an approach that automates the detection and
resolution of data mismatches, thus reducing the burden to end users. Specifically, our

3 www.biocatalogue.org, www.birncommunity.org and www.incf.org
4 pipeline.loni.ucla.edu
5 We studied the literature in data mismatches and organized them in common types. However,

this should not be considered as a complete list.

www.biocatalogue.org
www.birncommunity.org
www.incf.org
pipeline.loni.ucla.edu

122 P. Velasco-Elizondo et al.

approach uses: (i) architectural abstractions to automatically detect different types of
data mismatches, (ii) model-generation techniques to support the automatic generation
of repair alternatives, and (iii) utility theory to automatically check for satisfaction of
multiple QoS constraints in repair alternatives. We demonstrate the efficiency and cost-
effectiveness of the approach for workflow composition in the neuroscience domain.
The remainder of this paper is organized as follows. In Section 2 we introduce the
background and related work. In Section 3 we describe the proposed approach and in
Section 4 we demonstrate it in practice via an example. In Section 5 we present a dis-
cussion and evaluation of the approach. Finally, in Section 6, we discuss the conclusions
and future work.

2 Background and Related Work

Garlan et al. [14] introduced the term architectural mismatch to refer to conflicting as-
sumptions made by an architectural element about different aspects of the system it is
to be a part of, including those about data. Regarding data-related aspects, there is work
focused on: (a) categorizing and detecting (architectural) data mismatches and (b) au-
tomatically resolving them. In this section, we relate our work to other literature in these
two categories.

Categorizing and Detecting Data Mismatches. There have been numerous efforts in
the categorization and formal definition of data mismatches. Cámara et al. [5] defined
the term “data mismatch” while in [3] Bhuta and Boehm defined “signature mismatch”;
both mismatches highlight the differences that occur among two service components’
interfaces with respect to the type and format of their input and output parameters. Sim-
ilarly, Grenchanik et al. [19] defined “message data model mismatch” to describe differ-
ences in the format of the messages to be interchanged among components. Mismatch
42 in [13] refers to “sharing or transferring data with differing underlying representa-
tions.” Previously, Belhajjame et. al. [2], Bhuta and Boehm [3] and Li et. al. [24] de-
scribed mismatches for service compositions. Our data-mismatch resolution approach
extends these previous efforts on categorizing data mismatches and formalizes them as
rules to detect them amongst architectural components. In particular, we: (i) identify
a set of relevant classes of data mismatches as constraint failures, (ii) use this error
information to characterize the mismatches in an architectural style, (iii) build specific
analyses to support the detection of the identified mismatches, and (iv) have constructed
a prototype tool to detect them during system composition. In contrast to these works,
we can detect more specialized data mismatches such as the ones shown in Table 1 us-
ing an architectural approach that is more suitable for automated formal analysis.

Resolving Data Mismatches. There exists some literature that addresses data-mismatch
through automatic resolution approaches. The common approach across this work has
been to use adapters, which are components that can be plugged between the mis-
matched components to convert the data inputs and outputs as necessary. Kongdenfha
et al. [22] and Bowers and Ludascher [4] used adapters to convert among formats and
internal structures of services’ data. Several end-user composition environments today
also use adapters for data mismatch resolution. For example, Taverna introduces shims

Resolving Data Mismatches in End-User Compositions 123

that could implement data conversion services6. Similarly, LONI Pipeline provides the
notion of smartlines [25] that encapsulate data conversion tools that resolve data for-
mat compatibility issues during workflow composition. However, unlike our approach,
these works primarily focus on the automatic generation of adapters rather than on the
selection and composition of existing ones. Besides that, these approaches work only
for specific data types and formats (e.g., XML) and do not provide support for han-
dling QoS concerns of end users to drive the selection of converters. Even when some
environments provide selection support, they do not consider the scenario of having
multiple adapters to choose from to solve the same data mismatch.

In the following sections, we describe how our approach addresses the shortcomings
in the above discussed works.

3 Approach

As depicted in Figure 1, the approach presented in this paper is comprised of three main
phases: (Data) Mismatch Detection, (Data) Mismatch Repair Finding and (Data) Mis-
match Repair Evaluation. These three phases use (i) architectural descriptions for com-
ponents and compositions to automatically detect different types of data mismatches,
(ii) model-generation techniques to support the automatic generation of repair alter-
natives, and (iii) utility theory to automatically check for satisfaction of multiple QoS
constraints in repair alternatives.

Quality

...

Mismatch

Engine
Detection

Repair

Engine
Finding

Engine

Repair
Evaluation

Profile

Components

......

Repair Alternatives

R4

R1

R2

(1) Mismatch Detection Phase (2) Repair Finding Phase (3) Repair Evaluation Phase

Specifications
Mismatched Components
Conversion Components

Input Port
Output Port

Architectural Connector
Process Data Flow Program

Java

Alternatives

Ranking
of Repair

C1

R4

R3C1 C2

C1

C2
C1

R1
C2

C2

Fig. 1. The three main phases of the approach to data mismatch detection and resolution

Note that it is not the end users who create such architectural descriptions; such
descriptions already exist and are created by component developers and domain ex-
perts through means like SCORE [8] and SCUFL (from Taverna) [11]. We build on
our previous work on the SCORE architectural style, which provides a generic mod-
eling vocabulary for the specification of data-flow oriented workflows that comprises
the following elements: component types –which represent the primary computational
elements, connector types –which represent interactions among components, proper-
ties –which represent semantic information about the components and connectors, and
constraints –which represent restrictions on the definition and usage of components or
connectors, e.g., allowable values of properties and topological restrictions.

6 www.taverna.org.uk/introduction/services-in-taverna/

www.taverna.org.uk/introduction/services-in-taverna/

124 P. Velasco-Elizondo et al.

SCORE can be specialized to various domains through refinement and inheritance.
This requires style designers and domain experts to construct substyles that extend the
SCORE style and add properties and domain-specific constraints that allow end users
to correctly construct workflows within that domain. In the example presented in this
paper we use the FSL (Sub)Style, which includes components, properties, and con-
straints specific to neuroscience compositions. Figure 2 illustrates the specialization of
some of SCORE’s components types (i.e., Data Store, Service and User Interface) for
the neuroscience domain via inheritance. The FSL (Sub)Style, shown on the left-hand
side of the figure, includes specializations of service components that provide the func-
tionality of some of the tools offered by the FSL neuroscience suite.7 In previous work
we have also demonstrated the refinement of SCORE for the dynamic network analy-
sis domain [8]. Figure 2 shows some of the components in the resulting substyles, i.e.,
Dynamic Network Analysis and SORASCS.

User Interface

fslview AutoMap ORA DyNet ... Krackplot

SCORE Style

Neuroscience (Sub)Style

FSL (Sub)Style SORASCS (Sub)Style

Dynamic Network Analysis (Sub)Style

Data Store

......

...

... ...

...

...

Tool

Service

Visualization VisualizeUI...Registration Third−partySet of
Volumes

Text
Extractor

... Network
Analysis

... Visualization VisualizeUI

flirt fnirt dnifty dcom2nii

Fig. 2. Component refinement by inheritance

Program 1 shows a snippet of an ADL-like8 specification that illustrates specializa-
tion of FSL Style elements. Data format and data structure information are added as
properties of the ports of the flirt service component.9 Note also that the flirt

Program 1. Example of data ports with format and structural information

Property Type l e g a l F o r m a t s = Enum {NIfTI , DICOM} ;
Property Type l e g a l I n t e r n a l S t r u c t u r e = Enum {Aligned , NotAl igned } ;
Port Type In = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Port Type Out = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Component Type f l i r t extends R e g i s t r a t i o n = {

Port In : in ;
Port Out : o u t ;

}

7 http://www.fmrib.ox.ac.uk/fsl/
8 We assume familiarity with Architectural Description Languages (ADL) syntax.
9 In various architectural styles data ports are used to denote data elements produced (output)

and consumed (input) by components.

http://www.fmrib.ox.ac.uk/fsl/

Resolving Data Mismatches in End-User Compositions 125

service component inherits from the Registration service component in the Neuro-
science (Sub)Style, which in turn inherits from the Service component in the SCORE
Style as shown in Figure 2. The specialization of the SCORE style can be as detailed
as needed in a particular domain. The resulting architectural specifications can be used
to automatically check constraints to detect various types of violations in compositions.
As we will show later, in this work we take advantage of all these aspects to detect data
mismatches and construct legal repair alternatives.

3.1 Mismatch Detection Phase

End users are often constrained by their domain-specific styles of construction while
composing computations. By enforcing constraints that restrict the values of the prop-
erties of a composition, end-user compositions can be analyzed for data mismatches.
Architectural specifications are particularly useful for such a verification, as they embed
constraints that are evaluated at design time. In our approach, the Mismatch Detection
Engine analyzes compositions with respect to the mismatches described in Table 1 by
using the properties and constraints defined by SCORE (and the additional substyles).
For example, this predicate can be used to define an analysis to detect a data mismatch
involving both format and structural aspects:
f o r a l l c1 , c2 : S e r v i c e | c o n n e c t e d (c1 , c2) −>

s i z e (i n t e r s e c t i o n (c1 . o u t . fo rma t , c2 . in . f o r m a t)) > 0
AND (c1 . o u t . s t r u c t u r e == c2 . in . s t r u c t u r e)

The predicate states that it is not enough for a pair of connected Services c1 and c2
to deal with data of the same format (e.g., DICOM or NIfTI10), but the data must also
have the same structural properties (e.g., Aligned or NotAligned). Predicates are imple-
mented as type checkers that take end-user specifications and detect data mismatches.
Once a mismatch is detected via the defined analyses, the Mismatch Detection Engine
retrieves the architectural specifications of the pair of mismatched components and out-
puts this to the repair finding phase.

3.2 Repair Finding Phase

Selecting correct composition elements with appropriate properties, with right connec-
tions, has always been a tricky process, as people often make mistakes. In this phase, our
approach attempts to solve this problem by taking declarative specifications of the pair
of mismatched composition elements, along with the constraints in which they could be
combined, and use a model generator to find a configuration that satisfies them.

Fig. 3 outlines how our approach uses the Alloy Analyzer [18] (as a model genera-
tor) to generate valid compositions that satisfy the domain-specific constraints. These
form the repair alternatives for the compositions. The Repair Finding Engine takes
architectural specifications of both the (pair of) mismatched components and a set of
conversion components as input and translates them into Alloy specifications. For an
accurate model-generation, our approach also requires an Alloy model of the archi-
tectural style of the target system to which the mismatched components belong, that
includes the constraints in which the components can be used (as denoted in Fig. 3).

10 DICOM and NIfTI are data formats used to store volumetric brain-imaging data.

126 P. Velasco-Elizondo et al.

Data Flow

Alloy Models

(A
rc

hi
te

ct
ur

al
 S

pe
ci

fi
ca

tio
ns

)
C

on
ve

rs
io

n
C

om
po

ne
nt

s
M

is
m

at
ch

ed
 a

nd

(A
rc

hi
te

ct
ur

al
 S

pe
ci

fi
ca

tio
ns

)
R

ep
ai

r
A

lte
rn

at
iv

es

Architectural Style

run for 1

Components

Repair
Alternatives

(set of .xml files)
(set of .als files) A

llo
y

A
na

liz
er

Program
Java

Process

T
ra

ns
la

tio
n

Sc
he

m
e

(A
D

L
 to

 A
llo

y)

T
ra

ns
la

tio
n

Sc
he

m
e

(t
o

a
pa

rt
ic

ul
ar

 A
D

L
)

Fig. 3. The Repair Finding Engine

In recent years, various approaches to model architectural constructs in Alloy have
been developed, e.g., [20,17]. In our work, we have adopted the approach in [20] where
architectural types are specified as signatures (sig) and architectural constraints are
specified as facts (fact) or predicates (pred). To provide a general idea of this trans-
lation method, consider the following ADL-like specification of the dinifti service
component shown in the FSL (Sub)Style in Figure 2:

Component Type d i n i f t i extends T h i r d P a r t y T o o l = {
in . f o r m a t = DICOM;
. . .

}
The component extends the generic component type ThirdPartyTool and defines one
port of the type In with a DICOM format value. Using the adopted translation method,
results in the Alloy specification shown in Program 2. In this specification the extends
keyword specifies style-specific types extending the signatures of generic ones, while
the format and in relations model containment relations among types.

Program 2. A component specification in Alloy

s i g l e g a l F o r m a t s {}
s i g NIfTI , DICOM extends l e g a l F o r m a t s{}
s i g In { f o r m a t : l e g a l F o r m a t s}
s i g T h i r d P a r t y T o o l extends S e r v i c e { in : In , . . . }
s i g d i n i f t i extends T h i r d P a r t y T o o l {}

f a c t { d i n i f t i . in . f o r m a t = {DICOM} . . . }

While generating the legal repair, we use the constructibility of specific architectural
configuration analysis described in [20]. A simple version of this analysis can be per-
formed by instructing the Alloy Analyzer to search for a model instance that violates
no assertions and constraints within the specified scope number (using the run for 1

command). The Repair Finding Engine thus finds all the valid instances of a repair al-
ternative by having multiple runs of this command. As depicted in Fig. 3, the Alloy
Analyzer stores these instances as XML files. These files are then automatically trans-
formed to architectural specifications to be processed in the next phase of the approach.

3.3 Repair Evaluation Phase

Service repositories often have a large number of converters available that could lead
to multiple repair choices for a data mismatch. In this phase, our approach automates a

Resolving Data Mismatches in End-User Compositions 127

solution for such scenarios through a utility based strategy. We assume that most com-
position scenarios have some quality of service criteria such as speed, number of com-
putation steps, quality of output etc., which can enable the selection of an appropriate
repair strategy that maximizes the utility value of the resulting composition. Therefore,
architectural specifications of the set of repair alternatives and a QoS Profile are inputs
to the Repair Evaluation Engine (see Figure 4). This information is used to calculate an
overall QoS value for each repair alternative by using utility theory [12].

We implemented a simple repair evaluation strategy using QoS profiles for compo-
sitions. A QoS Profile is a XML-based template that is meant to be filled in by the
end user with two main types of QoS information: (i) QoS expectations for a repair
alternative and (ii) importance of each QoS concern in the profile compared to other
concerns. QoS concerns are defined as quality attributes and expectations on them are
characterized as utilities. Here, utility is a measure of relative satisfaction –received by
the consumer of a service that explains some phenomenon in terms of increasing or de-
creasing such satisfaction. For instance, let x1, x2, x3 be in a set of alternative choices.
If the decision-maker prefers x1 to x2 and x2 to x3, then the utility values uxi assigned
to the choices must be such that ux1 ≤ ux2 ≤ ux3. In utility theory, a utility function of
the form: u : X → R can be used to specify the utility u of a set of alternatives, where
X denotes the set of alternative choices and R denotes the set of utility values. For
example, the “accuracy” quality attribute could have a utility function defined by the
points 〈(Opt, 1.0), (Ave, 0.5), (Low, 0.0)〉 to represent that an optimal accuracy (Opt)
gives an utility of 1.0, an average accuracy (Ave) gives the utility of 0.5, and a low accu-
racy (Low) gives no utility. An end user might need to specify preferences over multiple
quality attributes to denote their relative importance. For example, in some situations
the designer may require the urgent execution of the workflow. Thus, a repair alterna-
tive should run as quickly as possible, perhaps at the expense of fidelity of the result.
Conversely, when converting among data formats, minimizing distortion can also be an
important concern. In the QoS Profile this information is specified as weights.

Sp
ec

if
ic

at
io

ns
)

(.
xm

l f
ile

)
Q

oS
 P

ro
fi

le

QoS Values

Q
oS

 V
al

ue
s

E
xt

ra
ct

io
n

A
gg

Q
A

 C
al

cu
la

tio
n

AggQoS
Values

O
ve

ra
ll

U
til

ity
 C

al
cu

la
tio

n

R
an

ki
ng

 o
f

R
ep

ai
r

A
lte

rn
at

iv
es

(.
tx

t f
ile

)

(A
rc

hi
te

ct
ur

al

R
ep

ai
r

A
lte

rn
at

iv
es

Process
Data Flow

Java
Program

Fig. 4. The Repair Evaluation Engine

To calculate the utility of a repair alternative, it is necessary to first calculate a set
of aggregated quality attribute values (aggQA) for a repair alternative. These values,
computed via a set of built-in domain-specific functions, are analogous to the quality
attributes values exposed by each converter but they apply to a whole repair alternative.

128 P. Velasco-Elizondo et al.

For example, suppose that a repair alternative comprises a sequence of three convert-
ers C exposing the following values for the distortion quality attribute: Average (e.g.,
0.5), Average (e.g., 0.5) and Optimal (e.g., 1.0). A distortion aggregated value for the
whole repair alternative in this case could be Average (i.e., 0.5) when using the follow-

ing domain-specific function:11 aggQADist : 1/m
k∑

i=1

= Dist(Ck), with m = n + 1.

There is one function for each quality attribute in the QoS Profile. In this approach, con-
verters must define values for the quality attributes to be considered in the QoS Profile
in order to apply these functions.

Using the above information, and based on the ideas presented in [6], we have de-
fined a straightforward way to compute the overall utility of a repair alternative. Given
a set of repair alternatives, each defining a set of q quality attributes, a set of aggregated
quality attributes values aggQA, a utility function u that assigns an utility value to each
aggQA and an importance value w for each one of these q quality attributes; a utility

function U of the form: U :
q∑

i=1

= wi ∗ u(aggQAi), with
q∑

i=1

wi = 1, can be used

to calculate the overall utility for each repair alternative. The utilities for the alterna-
tives are used to provide a ranking that the end-user can use to select the best repair
alternative to the detected mismatch.

4 Example

In this section we illustrate our approach with an example of workflow construction
in the neuroscience domain via a prototype tool called SWiFT [8], which provides a
graphical workflow construction environment. The tool uses a simplified version of
the SCORE architectural style to drive workflow construction and incorporates some
analyses to verify their validity at design time. We have extended it, as described in
Section 3, to allow for data mismatch detection. In this example we use both Data
Services (to access data stores) and FSL Services.

4.1 The Neuroscience Domain

In the neuroscience domain, scientists study samples of human brain images and neural
activity to diagnose disease patterns. This often entails analyzing large brain-imaging
datasets by processing and visualizing them. Such datasets typically contain 3D vol-
umes of binary data divided to voxels, as shown in Figure 5 (a).12 Across many such
datasets, besides the geometrical representation, brain volumes also differ in their ori-
entation. Therefore, when visualizing different brain volumes a scientist must “align”
them by performing registration. When two brain volumes A and B are registered, the
same anatomical features have the same position in a common brain reference system,
i.e., the nose position in A is in the same position in B, see Figure 5 (b). Thus, registra-
tion of brain volumes allows integrated brain-imaging views.

11 Dist stands for distortion.
12 A voxel is a unit volume of specific dimensions, e.g. width, length and height.

Resolving Data Mismatches in End-User Compositions 129

Fig. 5. (a) Volumes in voxels and (b) registered volumes with same brain reference

Processing and visualizing data sets require scientists in this domain to compose a
number brain-imaging tools and services provided by different vendors. The selection
of tools and services is carried out manually and often driven by analysis-dependent
values of domain-specific QoS constraints, e.g., accuracy, data loss, distortion. In this
context, the heterogeneous nature of services and tools often leads to data mismatches;
thus, scientists also need to select conversion tools and services to resolve them.

4.2 Workflow Composition Scenario

Consider that during workflow composition a scientist needs to visualize a set of brain-
image volumes. These volumes store brain images of the same person as 3D DICOM
volumes. The volumes are not registered, i.e., they are not aligned to the same brain ref-
erence system. To visualize this data, the scientist tries to compose the Set of Volumes
data service – which can read the actual store where the volumes are, and the Visualize
Volumes service – which enables their visualization. Table 2 shows an excerpt of the
specifications of the operations’ parameters of these two services. As can be seen, the
Visualize Volumes service requires data that is already registered and in ‘NIfTI’ format
(see its registered=‘Yes’ and format=‘NIfTI’ input parameters). Thus, these two ser-
vices cannot be composed as they have both a format and a structural mismatch, i.e.,
the interchanged data has both a different format and internal organization.

Table 2. An excerpt of the parameter specifications of the services in the example

Service Operation Input parameters Output parameters

Set of read name=‘out’ type=‘files’ format=‘DICOM’
Volumes Volumes registered=‘No’ sameSubject=‘Yes’
Visualize view name=‘in’ type=‘files’ format=‘NIfTI’
Volumes registered=‘Yes’ sameSubject=‘Yes|No’

dinifti DICOM name=‘in’ type=‘files’ name=‘out’ type=‘files’
toNIfTI format=‘DICOM’ registered=‘No|Yes’ format=‘NIfTI’ registered=‘Yes|No’

dcm2nii dc2nii name=‘in’ type=‘files’ format=‘DICOM’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No|Yes’ sameSubject=‘Yes|No’ sameSubject=‘Yes|No’ registered=‘Yes|No’

flirt register name=‘in’ type=‘files’ format=‘NIfTI’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No’ sameSubject=‘Yes|No’ registered=’Yes’ sameSubject=‘Yes|No’

fnirt register name=‘in’ type=‘files’ format=‘NIfTI’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No’ sameSubject=‘Yes|No’ registered=’Yes’ sameSubject=‘Yes|No’

130 P. Velasco-Elizondo et al.

Table 3. Some brain-imaging tools to perform registration and format conversion

Operation Description Name

LINEAR REGISTRATION Align one brain volume to another using linear transformations opera-
tions, e.g., rotation, translations.

flirt

NON-LINEAR REGISTRATION Extends linear registration allowing local deformations using non-linear
methods to achieve a better alignment, e.g., warping, local distortions.

fnirt

FORMAT CONVERSION Converts images from the DICOM format to the NIfTI format used by
FSL, SPM5, MRIcron and many other brain imaging tools.

dinifti,
dcm2nii

4.3 Data Mismatch Detection and Resolution

Figure 6 (a) shows how the data mismatch is presented to the scientist in our tool once
it is detected by an analysis based on the predicate presented in Section 3.1. In order to
compose these two services, the scientist should invoke the Repair Finding Engine by
clicking on the “Resolve Data Mismatch” button in the tool interface (shown on the left
hand side of Figure 6 (a)). We illustrate the case of a repair involving a combination of
converters, see Table 3. Format conversion can be performed by using either the dinifti
or the dcm2nii service converters. Registration can be performed by using the either the
flirt or the fnirt FSL services. Part of the operations’ parameter specifications of such
services is also shown in Table 2. Based on these specifications and the corresponding
Alloy Models, the Repair Finding Engine finds the following repair alternatives (RA):

RA1: Set of Volumes - dinifti - flirt - Visualize Volumes
RA2: Set of Volumes - dinifti - fnirt - Visualize Volumes
RA3: Set of Volumes - dcm2nii - flirt - Visualize Volumes
RA4: Set of Volumes - dcm2nii - fnirt - Visualize Volumes

All of these alternates are legal, as they obey the architectural style’s constraints that
restrict their structure and properties. However, because the constituent conversion ser-
vices have different quality attribute values –see Program 3, the overall QoS of each
repair alternative is different. Let’s assume that the scientist has specific QoS require-
ments for a repair. He would like to have no distortion in the brain-image; he would
like to have an optimal speed and accuracy, but would be OK with their average val-
ues. However, low value of speed or accuracy, or distortion is not acceptable for this
composition. This information, specified in the QoS Profile, can be summarized as fol-
lows: Accuracy: 〈(Optimal, 1.0), (Average, 0.5), (Low, 0.0)〉, Speed: 〈(Optimal, 1.0),
(Average, 0.5), (Low, 0.0)〉 and Distortion: 〈(Y, 0.0), (N, 1.0)〉, with the 0.5, 0.1 and 0.4
weight values respectively.

Based on the QoS information, and using a set of built-in domain-specific functions,
the Repair Evaluation Engine calculates the following aggregated quality attribute
values:13

RA1: aggQADist = N, aggQASp = Ave, aggQAAcc = Opt.
RA2: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.
RA3: aggQADist = N, aggQASp = Opt, aggQAAcc = Opt.
RA4: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.

13 Dist = Distortion, Sp = Speed, Acc = Accuracy, Opt=Optimal, Ave=Average.

Resolving Data Mismatches in End-User Compositions 131

Program 3. QoS specifications of the FSL services
<QoSSpecification> <!-- dinifti -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- dcm2nii -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- flirt -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- fnirt -->
<att><name>Distortion</name><val>Y</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>

With all this available information, the Repair Evaluation Engine can compute the over-
all utility of each repair alternative via the utility function U described in Section 3.3.

URA1 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 1.0 + 0.1 ∗ 0.5 + 0.4 ∗ 1.0 = 0.95

URA2 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.50 ∗ 0.00 + 0.10 ∗ 0.50 + 0.40 ∗ 1.0 = 0.25

URA3 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 1.0 + 0.1 ∗ 1.0 + 0.4 ∗ 1.0 = 1.0

URA4 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 0.0 + 0.1 ∗ 0.50 + 0.4 ∗ 1.00 = 0.45

Fig. 6. (a) Data mismatch detection in our tool, (b) Workflow after mismatch resolution

132 P. Velasco-Elizondo et al.

The obtained results are ranked and alternative 3, which has the highest utility, allows
automatic generation of the workflow shown in Figure 6 (b). This mismatch resolu-
tion strategy not only generates a correct workflow, but it also alleviates the otherwise
painful task of manual search and error resolution by the end users.

5 Discussion and Evaluation

In this section we discuss and evaluate our approach with respect to (a) its usefulness for
the targeted end users, (b) its implementation cost and flexibility, and (c) the efficiency
and scalability of the used techniques.

Usefulness for the Targeted End Users. Traditional composition requires low-level
technical expertise, which is not the case for many end users in some domains. For soft-
ware systems, architectural abstractions for components and composition help to bridge
the gap between non-technical and technical aspects of the software. We exploit this to
address the problems in end-user composition. Our approach is aided by architectural
abstractions, which allow a generic system modeling vocabulary that does not deal with
low-level technical aspects, and therefore can be more easily understood and used by
non-technical users. Such abstractions are designed once (by experts and component
developers) and can be reused multiple times by the end users.

Another aspect of our approach is the need for end users to specify multiple QoS
values. Although end users do not think explicitly about QoS attributes, they certainly
think implicitly about them. Informal discussions with end users highlights that they are
concerned about how long an analysis will take (i.e. performance), whether information
will leak (i.e. privacy), whether resulting images are suitable for a particular diagnostic
goal (i.e. precision, data loss) and the like. Our approach asks them to think about and
quantify these explicitly to help them identify better compositions for their requirements.

Implementation Cost and Flexibility. Because of the nature of our approach, its im-
plementation cost can be significantly minimized by reusing or refining several arti-
facts such as the architectural styles, the analyses, the translation rules to Alloy, the
domain-specific aggregation functions and the overall QoS utility function. Although
some effort is needed for creating these artifacts, this effort is required only once by
a style designer and a domain expert and the resulting artifacts can be reused later
many times by end-users during workflow construction. Moreover, as discussed before,
many of these artifacts can be reused through refinement. Note that the modeling con-
structs of languages such as BPEL or the domain-specific ones used by composition
environments such Taverna and LONI Pipeline can be reused many times, but cannot
be refined to specific domains, like ours. Moreover, our approach is flexible enough to
be integrated in composition tools; for example the SWiFT tool, used in the examples
described in Section 4.

Efficiency and Scalability. A large number of languages today support the composition
of computational elements. Examples include, BPEL, code scripts, and domain-specific
composition languages (DSCLs) used by Taverna and LONI Pipeline. However, most
of these provide very low-level and/or generic modeling constructs, and hence are not
very efficient for end-user tasks [8]. Architectural specifications, in contrast, provide

Resolving Data Mismatches in End-User Compositions 133

high-level constructs that can be reused and refined to address composition in specific
application domains. The formal nature of architectural specifications enables various
analyses to be performed automatically. We illustrated this by reusing and refining some
architectural definitions in SCORE; specifically by adding properties to data ports and
constraints on them, we were able to handle a bigger scope and tackle data mismatch
detection in the neuroscience domain. Thus, as shown in Table 4, we claim that archi-
tectural specifications are more efficient and scalable than BPEL, code scripts or the
mentioned domain-specific languages.

Table 4. Efficiency and scalability aspects for some composition specification languages

Architectural Specifications BPEL, Scripts, DSCLs

Efficiency (in terms of): Robust Limited
Automated Analysis
Scalability (in terms of): Robust No support
Refinement of abstractions

In comparison, several formal methods have been used to support the automated
composition of architectural elements at design time. A majority of existing work in
web-service automation focuses on using Artificial Intelligence (AI) planning tech-
niques [1].14 Although, many such AI planning techniques guarantee correctness of
the generated compositions based on logic, a correct composition might not be the op-
timal composition, as it is recognized that planners tend to generate unnecessarily long
plans [21] and little consideration is given to QoS aspects while selecting the services
in a plan [1]. Additionally, AI planning based service composition tools such as SHOP2
[27] do not consider the scenario of having more than one service for a plan’s action.
Therefore, multiple composition plans cannot be generated. Another interesting line of
work has been towards assisted mash-up composition using pattern-based approaches,
e.g. [7] –despite the fact that not all the evaluation aspects presented in Table 5 apply
for them. A mashup consists of several components, namely mashlets, implementing
specific functionalities. Thus, pattern-based approaches to mashup composition aim at
suggesting pre-existing “glue patterns”, made of mashlets, in order to autocomplete a
mashup. Most of this work relies on an autocompletion mechanism based on syntactic
aspects of the signatures of the mashlets and the “collective wisdom” of previous users
that have successfully use the glue patterns. Thus, optimal composition generation is
limited. Moreover, the number of composition alternatives depends on the number of
existing patterns rather than the number of individual mashlets. Finally, approaches us-
ing ontologies based on description logic are also used to assist users in selecting and
composing workflow components, e.g. [16]. However, most of these approaches offer
limited support for resolving mismatches that require a collection of converters.

We address the limitations of existing work in automated composition through model
checking and model generation using Alloy. Two important aspects motivated its use
in our work. First, by using the model finder capabilities of Alloy Analyzer it is easy

14 Service composition based on AI planning considers services as atomic actions that have ef-
fects on the state. Given a list of actions that have to be achieved and a set of services that
accomplish them, a plan is an ordered sequence of the services that need to be executed.

134 P. Velasco-Elizondo et al.

Table 5. Efficiency and scalability aspects of some approaches to automated composition, i.e.
Model Checking with Alloy (MC), Artificial Intelligence Planning (AIP) and Pattern-based (PB)

MC AIP PB

Efficiency (in terms of):
- Automated composition Robust Robust Robust
- Composition correctness Robust Robust Robust
- Optimal composition generation Limited Limited Limited
- Multiple composition alternatives Robust Limited Limited
- Translation to architectural constructs Robust No Support Not Apply
Scalability (in terms of):
- Processing large models Limited Limited Not Apply

Table 6. Results of the scalability experiment. All times are measured in milliseconds.

No. of Converters No. of Signatures Translation Time (TT) Solving Time (ST) TT + ST

4 13 256 47 303
10 21 827 141 968
15 26 1,077 234 1,311
25 36 1,575 453 2,028
50 61 9,376 2,215 11,591

to generate multiple alternative compositions. Secondly, Alloy provides a simple mod-
eling language, based on first-order and relational calculus, that is well-suited for rep-
resenting abstract end-user compositions. Additionally, we used several ADL to Alloy
automated translation methods developed in recent years, e.g. [20,17,29].

One of the widely known problems of using model checking is the combinatorial
explosion of the state-space that limit their scalability when working with large models.
We believe that it is not a major concern in our case. To support this claim, we performed
an experiment in which we increased the number of converters from 4 to 50 to work
with bigger models.15 Table 6 summarizes the results obtained, including those for the
example presented in this paper with 4 converters. TT is the translation time, ST is the
solving time, and the summation of TT+ST is the total time to generate the first possible
solution –following solutions take negligible time.16 Note that the time to generate a
repair alternative in a scenario with 50 converters is about 11 secs. This time is a drastic
improvement over the complexity of resolving such mismatches manually.

6 Conclusions and Future Work

Many composition frameworks today provide support for data mismatch resolution
through special purpose data converters. However, as end users often have several con-
verters to select from, they still have to put significant effort in identifying them and

15 The experiment was performed on a 2.67 GHz Intel(R) Core i7 with 8 GB RAM.
16 TT is the time that the analyzer takes to generate the Boolean clauses; ST is the time it takes

to find a solution with these clauses.

Resolving Data Mismatches in End-User Compositions 135

determining which meet their QoS expectations. In this paper we presented an approach
that automates these tasks by combining architectural modeling, model-generation and
utility analysis. We demonstrated our approach with SWiFT –a web-based tool for
workflow composition, using a simple data-flow composition scenario in the brain
imaging domain. However, we have been working with other domains with different
computation models [15].

Our future work includes exploring the integration of our approach with popular
composition environments and performing usability studies on these environments. We
also plan to study means to make QoS specification more approachable to end users
by considering more real-life situations in specific domains, e.g. in the neuroscience
domain, distortion could refer to a situation in which a converter obscures tumours
of certain diameter. Similarly, as new converters and quality attributes may appear over
time, we plan to define means to evolve the domain specific-functions and QoS profiles.
We are also considering to explore applying the techniques used in this work to other
forms of repairs. e.g. service substitution in workflows with obsolete services.

Acknowledgments. This material is based upon work funded by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and devel-
opment center. Further support for this work came from Office of Naval Research grant
ONR-N000140811223, the Center for Computational Analysis of Social and Organi-
zational Systems (CASOS) and the FCT Portuguese Science and Technology Agency
under the CMU-Portugal faculty exchange program. The authors would like to thank
to Aparup Banerjee, Laura Gledenning, Mai Nakayama, Nina Patel, and Hector Rosas
–MSE students at CMU, and Diego Estrada Jimenez –MSE student at the CIMAT for
their contributions in development of the SWiFT tool and the integration of the engines
into it respectively.

References

1. Baryannis, G., Plexousakis, D.: Automated Web Service Composition: State of the Art and
Research Challenges. Technical Report ICS-FORTH/TR-409, ICS-FORTH (2010)

2. Belhajjame, K., Embury, S.M., Paton, N.W.: On characterising and identifying mismatches
in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS
(LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)

3. Bhuta, J., Boehm, B.: A framework for identification and resolution of interoperability mis-
matches in COTS-based systems. In: Proc. of the Int. Workshop on Incorporating COTS Soft.
into Soft. Syst.: Tools and Techniques. IEEE Comp. Soc. (2007)

4. Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scien-
tific workflows. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 1–16. Springer,
Heidelberg (2004)

5. Cámara, J., Martı́n, J.A., Salaün, G., Canal, C., Pimentel, E.: Semi-automatic specification
of behavioural service adaptation contracts. ENTCS 264(1), 19–34 (2010)

6. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence of
multiple objectives. In: Proc. of the Int. Workshop on Self-adaptation and Self-managing
Systems, pp. 2–8. ACM (2006)

7. Chowdhury, S.R.: Assisting end-user development in browser-based mashup tools. In: Proc.
of the Int. Conf. on Software Engineering, pp. 1625–1627. IEEE Press (2012)

136 P. Velasco-Elizondo et al.

8. Dwivedi, V., Velasco-Elizondo, P., Fernandes, J.M., Garlan, D., Schmerl, B.: An architectural
approach to end user orchestrations. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 370–378. Springer, Heidelberg (2011)

9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River (2005)

10. Ko, A.J., et al.: The state of the art in end-user software engineering. ACM Comput.
Surv. 43(3), 21 (2011)

11. Hull, D., et al.: Taverna: A tool for building and running workflows of services. Nucleic
Acids Research 34(Web Server Issue), W729–W732 (2006)

12. Fishburn, P.C.: Utility theory for decision making. Pub. in operations research. Wiley (1970)
13. Gacek, C.: Detecting architectural mismatches during systems composition. PhD thesis, Uni-

versity of Southern California, Los Angeles, CA, USA (1998)
14. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so hard. IEEE

Software 12, 17–26 (1995)
15. Garlan, D., Dwivedi, V., Ruchkin, I., Schmerl, B.: Foundations and tools for end-user ar-

chitecting. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539,
pp. 157–182. Springer, Heidelberg (2012)

16. Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for Pegasus: A semantic
approach to creating very large scientific workflows. In: Proc. of the Int. Conf. on Innovative
Applications of Artificial Intelligence, pp. 1767–1774. AAAI Press (2007)

17. Hansen, K., Ingstrup, M.: Modeling and analyzing architectural change with Alloy. In: Proc.
of the ACM Symposium on Applied Computing, pp. 2257–2264. ACM (2010)

18. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press (2006)
19. Grechanik, M., Bierhoff, K., Liongosari, E.S.: Architectural mismatch in service-oriented

architectures. In: Proc. of the Int. Workshop on Systems Development in SOA Environments.
IEEE Comp. Soc. (2007)

20. Kim, J.S., Garlan, D.: Analyzing architectural styles. Journal of Systems and Software 83,
1216–1235 (2010)

21. Klusch, M., Gerber, A.: Evaluation of service composition planning with OWLS-XPlan. In:
Proc. of the Int. Conf. on Web Intelligence and Intelligent Agent Technology, pp. 117–120.
IEEE Comp. Soc. (2006)

22. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul, R.: Mis-
match patterns and adaptation aspects: A foundation for rapid development of web service
adapters. IEEE Transactions on Services Computing 2, 94–107 (2009)

23. Letondal, C.: Participatory programming: Developing programmable bioinformatics tools
for end-users. In: End User Development. Human-Computer Interaction Series, vol. 9,
pp. 207–242. Springer, Netherlands (2006)

24. Li, X., Fan, Y., Jiang, F.: A classification of service composition mismatches to support ser-
vice mediation. In: Proc. of the Sixth Int. Conf. on Grid and Cooperative Computing, pp.
315–321. IEEE Comp. Soc. (2007)

25. Neu, S.C., Valentino, D.J., Toga, A.W.: The LONI debabeler: a mediator for neuroimaging
software. Neuroimage 24, 1170–1179 (2005)

26. Schmerl, B., Garlan, D., Dwivedi, V., Bigrigg, M.W., Carley, K.M.: SORASCS: a case study
in SOA-based platform design for socio-cultural analysis. In: Proceedings of the Int. Conf.
on Software Engineering, pp. 643–652. ACM (2011)

27. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant. 1(4), 377–396 (2004)

28. Wassink, I., van der Vet, P.E., Wolstencroft, K., Neerincx, P.B., Roos, M., Rauwerda, H.,
Breit, T.M.: Analysing Scientific Workflows: Why Workflows Not Only Connect Web Ser-
vices. In: Proc. of the Congress on Services, pp. 314–321. IEEE Comp. Soc. (2009)

29. Wong, S., Sun, J., Warren, I., Sun, J.: A scalable approach to multi-style architectural mod-
eling and verification (2008)

	Resolving Data Mismatches in End-User Compositions
	1 Introduction
	2 Background and RelatedWork
	3 Approach
	3.1 Mismatch Detection Phase
	3.2 Repair Finding Phase
	3.3 Repair Evaluation Phase

	4 Example
	4.1 The Neuroscience Domain
	4.2 Workflow Composition Scenario
	4.3 DataMismatch Detection and Resolution

	5 Discussion and Evaluation
	6 Conclusions and Future Work
	References

