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Architecture design applies de-
sign decisions to satisfy a set of architec-
tural drivers—the most important func-
tional, quality attribute, and constraint 
requirements that shape a system.1 Ar-
chitecture design is notoriously difficult 
to learn and even harder to master; good 
architects typically have gray hair.

If a process is important and difficult, 
a common approach in many fields, in-
cluding software engineering, is to try 
to systematize it to ensure predictabil-
ity, repeatability, and high-quality out-
comes. To this end, a number of archi-
tecture design methods have appeared 
during the last decade. For example, 

attribute-driven design (ADD) provides 
detailed steps for architects, including 
entry and exit conditions, to perform de-
sign.2 Such methods provide structure to 
complex, often daunting problems.

However, such methods are difficult to 
apply because they deal in abstractions. 
For example, ADD primitives are tactics 
and patterns, whereas architects daily 
deal with additional primitives including 
commercial frameworks such as JavaSer-
ver Faces, Spring, Hibernate, and Axis.

Here, we present a more realistic, 
holistic approach to architecture de-
sign. It starts with architecturally sig-
nificant requirements—drivers and 
constraints. It then systematically links 
them to design decisions and systemati-
cally links those decisions to the imple-
mentation options available through 
commercial frameworks.

We stress the importance of consid-
ering technologies—specifically frame-
works—as first-class design concepts. 
We illustrate this through a real-world 
case study that highlights how frame-
works are selected within ADD itera-
tions and how architectural drivers are 
connected to the selection of frame-
works. Initial qualitative results have 
been obtained from the successful ap-
plication of this approach in several 
projects in a large software develop-
ment company in Mexico City. 

Design Decisions
Architectural design is performed by 
applying design decisions to satisfy a 
set of architecturally significant re-
quirements, typically called architec-
tural drivers. Architecture design deci-
sions fall under several categories.

Allocation of Responsibilities
The allocation of responsibilities in-
volves identifying the important re-
sponsibilities, including basic system 
functions, architectural infrastruc-
ture, and satisfaction of quality at-
tributes and determining how these 
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responsibilities are allocated to non-
runtime and runtime elements.

Coordination Model
The coordination model involves iden-
tifying the elements of the system that 
must coordinate (or are prohibited 
from coordinating), determining the 
properties of the coordination, such as 
timeliness, currency, completeness, cor-
rectness, and consistency, and choosing 
the communication mechanisms that 
realize those properties.

Data Model
The data model involves choosing the 
major data abstractions, their opera-
tions, and their properties, organizing 
the data, and compiling any metadata 
needed for consistent interpretation.

Management of Resources
The management of resources involves 
identifying the resources that must be 
managed and determining the limits 
of each, determining which system el-
ements manage each resource, how re-
sources are shared, and the strategies 
employed when there’s contention for 
or saturation of resources.

Mapping among Architectural Elements
The mapping among architectural ele
ments involves the mapping of mod-
ules and runtime elements to each 
other—that is, the runtime elements 
that are created from each module; 
the modules that contain the code for 
each runtime element; the assignment 
of runtime elements to processors; 
the assignment of items in the data 
model to data stores; and the mapping 
of modules and runtime elements to 
units of delivery.

Binding Time Decisions
The binding time decisions involve es-
tablishing the point of time in the life 
cycle and the mechanism for achieving 
a variation in an architectural decision. 

Binding time decisions introduce allow-
able ranges of variation; each of the de-
cisions in the other six categories have 
an associated binding time decision. 
This variation can be bound at differ-
ent times in the software life cycle by 
different entities—from design time by 
a developer to runtime by an end user.

Technology Choice
Technology choice involves 

•	 deciding which technologies are 
available to realize the decisions 
made in the other categories; 

•	 determining whether the available 
tools to support this technology 
choice (IDEs, simulators, testing 
tools, and so on) are adequate for 
development to proceed;

•	 determining the extent of inter-
nal familiarity and external sup-
port available for the technology 
(courses, tutorials, examples, and 
availability of contractors);

•	 determining the side effects of 
choosing a technology, such as a re-
quired coordination model or con-
strained resources; and

•	 determining whether a new tech-
nology is compatible with the exist-
ing stack. 

This final category is critical to sys-

tem success. It is ubiquitous—every ar-
chitect of every system must make this 
choice or deal with its consequences if 
it’s given as a constraint—and fraught 
with uncertainty. Ideally, an architec-
ture design method should help re-
duce this uncertainty. However, most 

methods don’t provide guidance for 
technology choices.3

To illustrate this, consider ADD, 
which is a well-established method for 
designing an architecture.2 ADD com-
prises the following steps:

	 1.	Confirm that the requirements in-
formation is sufficient.

	 2.	Choose a system element to 
decompose.

	 3.	Identify candidate architectural 
drivers.

	 4.	Choose a design concept (patterns 
and tactics) that satisfies the drivers.

	 5.	Instantiate architectural elements 
and allocate responsibilities.

	 6.	Define interfaces for the instanti-
ated elements.

	 7.	Verify and refine requirements and 
make them constraints for instanti-
ated elements.

	 8.	Repeat these steps for the next 
element.

Step 4 is critical. Architecture pat-
terns and tactics guide the architect 
from these key requirements to a de-
sign concept. Consider, for example, 
the tactics hierarchy for the quality at-
tribute of performance (see Figure 1).  
An architect designing a high-perfor-
mance system is guided from coarse-
grained requirements, such as con-

trolling the demand for or managing 
resources, to specific tactics, such as 
managing the sampling rate, intro-
ducing concurrency, and bounding 
queue sizes. On this basis, an archi-
tect might then choose a pattern that 
instantiates these tactics, such as 

Most methods don’t provide guidance  
for technology choices.
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Concurrent Pipelines, Leader/Follow-
ers, or Thread Pool.4

But where to from there? At some 
point, architects must choose a set of 

technologies and, more specifically, 
frameworks to instantiate system as-
pects (such as user interface develop-
ment and persistence).

Frameworks as First-Class 
Design Concepts
Frameworks incorporate many pat-
terns and tactics. (For more on frame-
works, see the sidebar.) Mapping 
these patterns and tactics onto the 
ones employed in the architecture de-
sign—the output of ADD—might not 
be straightforward. For example, the 
.NET framework provides services for 
clustering, load balancing, implement-
ing a RAID (redundant array of inde-
pendent disks), rolling upgrades, and 
so forth. What’s the relationship be-
tween these services and the patterns 
and tactics that address performance?

Our answer is that patterns and tac-
tics typically instantiate the services 
that frameworks provide. For this rea-
son, frameworks need to be considered 
first-class concepts during design. Ar-
chitects must recognize this. In doing 
so, they simultaneously design both 
top-down, using abstract patterns and 
tactics, and bottom-up, by selecting 
concrete realizations of those design 
concepts within frameworks.

A Case Study
To illustrate the value of using frame-
works as first-class concepts in design 
methods, we present a case study of the 
greenfield development of a system to 
buy bus tickets. This is a typical enter-
prise application in which many users 
interact with the system through Web 
browsers or mobile apps. They perform 
processes, such as checking bus sched-
ules, that act according to information 
from a database.

Before starting architecture design, 
the development team elicited and ana-
lyzed these architectural drivers:

•	 Primary use cases constitute a sub-
set of the system’s use cases that 
describe the critical functionality 
needed for achieving the system’s 
most important business goals.

•	 Quality attribute scenarios 

Performance tactics

Control resource demand Manage resources

Manage sampling rate

Events
arrive 

Response
generated within 
time contraints  

Limit event response

Prioritize events

Reduce overhead

Bound execution times

Increase resource
ef�ciency 

Increase resources

Introduce concurrency

Maintain multiple
copies of computations 

Maintain multiple
copies of data 

Bound queue sizes

Schedule resources

Figure 1. The tactics hierarchy for the quality attribute of performance. Each tactic is an 

architectural design primitive aimed at either controlling the demand for a resource or for 

managing the resource.  (Reprinted by permission of Pearson Education.1)
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 1 The architectural drivers for a system  
for buying bus tickets.

Driver Description

Primary  
use cases

Buy ticket
Search timetables

Quality  
attribute 
scenarios 
(ordered by 
priority)

Performance. A user performs a timetable search during peak load (5,000 
users are accessing the system); the system processes the query in 
under 10 seconds.

Security. A user submits personal data in a form; 100 percent of this data is 
transferred and stored using encryption.

Usability. A user fills out a form incorrectly. After submitting, the system high-
lights all erroneous fields and provides instructions for correcting them.

Modifiability. A developer adds a user interface language to the system during 
maintenance. The language is added successfully and no recompiling is 
necessary.

Constraints The initial release’s time to market is six months.
The system must be compatible with Internet Explorer 8+, Firefox 3+, 

Chrome 6+, and Safari 5+.
The system must support access from iOS and Android in a later release.
The system must work with a legacy relational database for which the cus-

tomer had acquired a license.
The development team is small and has experience in Java, JavaServer 

Faces, Spring, and Hibernate.
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describe quality attribute require-
ments in terms of the system’s re-
sponses to specific stimuli in a mea-
surable way.

•	 Constraints limit the space of de-
sign and implementation decisions.

Table 1 shows the results.
The architect employed ADD, fol-

lowing the steps we listed earlier, and 
he also used patterns4 and tactics2 

catalogs. Table 2 summarizes the ini-
tial iterations of the design process per-
formed by the architect.

The first iteration aimed to de-
compose the entire system (ADD step 
2). This was because this system was 
greenfield development, and the pri-
mary concern was to define the overall 
system structure and allocate respon-
sibilities to elements that team mem-
bers could develop independently. The 

drivers for this iteration (ADD step 
3) included the constraints 1.1–1.4 in 
Table 2. The architect decided to cre-
ate a layered system that separated user 
interface aspects from the rest of the 
system. This would allow easy support 
for access through Web browsers or 
mobile devices as the system evolved. 
The architect created a presentation 
layer, a business logic layer, and a data-
base access layer that aimed to isolate 

Frameworks
A framework is a reusable software element that provides generic 
functionality, addressing recurring concerns across a range of ap-
plications. Frameworks increase productivity by letting program-
mers focus on business logic and end-user value rather than un-
derlying technologies.

Frameworks abstract some combination of application, lan-
guage, hardware, networking, storage, or operating system 
characteristics. One aim of abstraction is to reduce the cognitive 
burden on the programmer, who needs to learn only the frame-
work rather than all the underlying details. The abstractions should 
change more slowly than the details, easing portability and evo-
lution. Moreover, these abstractions, being shared among many 
systems, will more likely be heavily tested, reducing or entirely 
eliminating classes of bugs.

You can use frameworks by either incorporating or extending 
the functionality they provide. For example, a programmer might 
use existing widgets from a GUI framework to build a user inter-
face. He or she might, however, not find exactly the right widgets 
with the right functionality. In that case, the programmer might 
choose to extend an existing widget to augment its default func-
tionality through mechanisms such as inheritance or configuration 
options such as XML files or annotations. This extension wouldn’t 
actually modify the framework (which typically isn’t allowed).

Software frameworks are related to patterns and tactics in that 
frameworks instantiate these concepts. The patterns and tactics 
that a framework instantiates allow particular quality attributes to 
be satisfied.

Consider Hibernate, a popular object-relational mapping frame-
work. Hibernate instantiates several patterns, including Identity 
Field, Metadata Mapping, Lazy Load, and Unit of Work1—as well 
as tactics for promoting modifiability and performance. Object-
relational mapping hides the fact that an object model persists in 

a relational database. Mappers achieve this by isolating the code 
that translates between these two models, which is an instance of 
the modifiability tactic of increasing semantic coherence. Further-
more, the mapper is typically parameterized through configuration 
files, which is an instance of the modifiability tactic of deferring 
binding. Hibernate also implements tactics that promote perfor-
mance; these include resource management tactics such as fetch-
ing strategies and using caches.2

Another example of design concept instantiation is Spring, an 
extensive framework for developing enterprise applications. At its 
core lies the container, a mechanism that lets developers create 
and connect components—beans—using the Dependency Injec-
tion pattern.3 Spring instantiates such patterns as Abstract Fac-
tory, Prototype, and Proxy.4

Spring also instantiates tactics: using an intermediary and 
deferring binding promote modifiability, introducing concurrency 
promotes performance, and exception handling and transactions 
promote availability.

Other examples of frameworks in widespread use include JEE 
(Java Enterprise Edition), .NET, MCF (Meta Content Framework), 
Oracle ADF (Application Development Framework), Cocoa, Ruby on 
Rails, iBatis, and JUnit.
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the object-oriented system from per-
sistence details in the relational data-
base. Finally, the architect employed 
the Domain Objects pattern to allocate 
modules to the development team. Ele-
ments derived from the domain model 
were used to decompose the layers into 
modules that could be concurrently 
developed.

For the second iteration, the archi-
tect established a coordination model 
among the domain objects to support 
the primary use cases. The domain ob-
jects became the elements to decom-
pose; the primary use cases became the 
drivers. The architect specialized the 
domain objects using patterns accord-
ing to their layer. In the presentation 
layer, domain objects were responsible 
for receiving user input and displaying 
information. In the business logic layer, 
domain objects became application 
services. In the database access layer, 

domain objects became data mappers. 
To promote testability, the architect 
also applied the tactic of separating the 
interface from the implementation. The 
system requirements didn’t explicitly 
state this requirement, but the architect 
knew from experience that supporting 
it was critical.

For the third iteration, the architect 
wanted to achieve the performance sce-
nario in Table 1. He focused first on the 
database access layer. He improved per-
formance by using the Lazy Load pat-
tern to avoid retrieving unnecessary in-
formation from the database when an 
object with dependencies was retrieved. 
Although this decision promotes per-
formance, by itself it’s insufficient be-
cause other factors affect performance, 
such as dispatching multiple requests 
simultaneously.

So, to achieve the performance sce-
nario, the architect made decisions 

elsewhere in the system. For example, 
in the fourth iteration, he applied the 
tactic of introducing concurrency on 
the business logic layer to support si-
multaneous requests along with trans-
actions and their associated isolation 
levels. Design continued for additional 
iterations to satisfy the other drivers, 
such as security. The final result was 
an elegant design—one that satisfied 
all the drivers—that was still based 
on solid conceptual foundations and a 
proven design method.

At this juncture, the architect faced 
a challenge: How would he map exist-
ing frameworks to the previously pro-
duced design? This activity isn’t always 
straightforward because a mismatch 
frequently occurs between the patterns 
and tactics that the frameworks incor-
porate and the ones selected in the de-
sign. For example, consider the busi-
ness logic layer (iteration 4 in Table 2), 
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 2 Five of the initial design iterations.

Iteration Drivers (ADD step 3)
Element to decompose 
(ADD step 2)

Design decisions  
(ADD step 4) Rationale

1 1.1. Web access and future 
support for mobile-app 
constraints

1.2. Object-oriented system 
(Java) and relational  
database constraints

1.3. Small development team
1.4. Time-to-market constraint

The system as a whole Layers pattern Promotes 1.1

Database Access Layer pattern
Domain Model pattern

Influenced by 1.2

Domain Objects pattern Influenced by 1.3 and 1.4

2 2.1. Primary use cases
2.2. Testability

Layers User Interface Domain Objects 
pattern

Application Service pattern
Data Mapper pattern

Enables 2.1

Separate-interface-from-
implementation tactic

Promotes 2.2

3 3.1. Performance scenario
3.2. Search timetables use case

Database access layer Lazy Load pattern Promotes 3.1
Enables 3.2

4 4.1. Performance scenario
4.2. Primary use cases

Business logic layer Introduce-concurrency-
tactic-through-Leader/
Followers pattern

Transactions tactic

Promotes 4.1
Enables 4.2

5 5.1. Security scenario Database access layer Maintaining-data-
confidentiality tactic

Promotes 5.1
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where the architect employed the tactic 
of introducing concurrency by creat-
ing a thread pool using the Leader/Fol-
lowers pattern, which could affect ad-
ditional components and relationships. 
Suppose the architect uses Spring to 
implement the design. In Spring, you 
can easily introduce concurrency by 
annotating the source code. When the 
architect selects Spring, some compo-
nents and relationships previously de-
signed for the Leader/Followers pattern 
become unnecessary, so a mismatch 
appears in the architecture. To correct 
this situation, the architect must revisit 
the design, which at this point might 
already be partially documented, and 
modify it to reflect the changes necessi-
tated by the framework. However, this 
results in unnecessary rework.

Applying Our Approach to the Case Study
You can overcome the problem of map-
ping a purely conceptual design to 
the frameworks that implement it by 
considering technologies, and specifi-
cally frameworks, as first-class design 

concepts up front—that is, frameworks 
must be considered jointly with pat-
terns and tactics during architectural 
design. This is particularly worthwhile 
in domains such as the one in our case 
study, because many frameworks exist 
to address such systems’ design objec-
tives, supporting many quality attri-
bute concerns such as security, concur-
rency, and distribution.

Table 3 shows how the design pro-
cess can be performed after frameworks 
are adopted as first-class design con-
cepts. In iteration 2, the architect se-
lected several frameworks that address 
objectives in the layers. Many frame-
works exist for addressing domains 
such as Web-based user interfaces (for 
example, JavaServer Faces or Struts) or 
object-oriented models’ persistence into 
relational databases (for example, Hi-
bernate or iBatis). However, the archi-
tect selected frameworks on the basis of 
two of the constraints in Table 3: team 
experience with frameworks and time 
to market. These constraints compli-
cated and restricted the selection pool of 

frameworks because the learning curve 
for frameworks introduces risk. This 
list of constraints, however, is small; in 
general, you will likely consider many 
criteria when selecting frameworks.

The choice of framework will affect 
further iterations. For example, deci-
sions to satisfy the performance sce-
nario in Table 3’s third iteration dif-
fer from those in Table 2. In Table 3, 
because the architect chose Hibernate 
as the persistence framework, he ad-
dressed performance by configuring 
the provided framework parameters.5 
In this case, Hibernate incorporates 
the Lazy Load pattern but also incor-
porates tactics such as support for a 
cache (an instance of the tactic of main-
taining multiple copies) that allow im-
proved performance.

As in Table 2, design continues 
along other iterations. For Table 3, 
however, design decisions at each itera-
tion range from selecting new patterns 
and tactics to configuring options pro-
vided by the frameworks selected in 
previous iterations.
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 3 Three design iterations using frameworks as part of the design process.

Iteration Drivers (ADD step 3)
Element to decompose 
(ADD step 2)

Design decisions  
(ADD step 4) Rationale

1 1.1 Web access and future 
support for mobile-app 
constraints

1.2 Object-oriented system 
(Java) and relational 
database constraints

1.3 Small development team
1.4 Time-to-market constraint

The system as a whole Layers pattern Promotes 1.1

Database Access Layer pattern
Domain Model pattern

Influenced by 1.2

Domain Objects pattern Influenced by 1.3 and 1.4

2 2.1 Primary use cases
2.2 Testability
2.3 Team experience with 

framework constraint
1.4 Time-to-market constraint

Layers Application Service pattern Enables 2.1

Separate-interface-from-
implementation tactic

Promotes 2.2

JavaServer Faces, Spring, 
and Hibernate 
frameworks

Influenced by 2.3 and 2.4

3 3.1 Performance scenario
3.2 Search timetables use case

Database access layer Use Hibernate’s support for 
lazy associations

Use Hibernate’s cache 
support

Promotes 3.1
Enables 3.2
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Discussion
Our approach has been applied suc-
cessfully in several projects in a large 
company in Mexico City that develops 
software for government and private 
customers.

Observed Benefits
Using our approach simplified the 
adoption of a method for systematic 
design—in this case, ADD. The 
company’s architects had never 
received theoretical training on 
architecture and were oriented toward 
selecting technologies rather than using 
a method. Seeing how the knowledge 
they already had could fit in the method 
greatly helped them embrace it.

Also, design activities now produce 
architectures that can be implemented 
more straightforwardly, preventing 
mismatch and thus avoiding rework.

In addition, architecture design 
produces an executable architecture 
in addition to documentation (http://
epf.eclipse.org/wikis/abrd/core.tech. 
common.ex tend_ supp/gu idances / 
concepts/executable_arch_D4E68CBD.
html). This executable architecture is use-
ful for testing, evaluation, and training.

Finally, during architectural evalu-
ations, the evaluation team—other ar-
chitects from the company—frequently 
uncovers risks associated with specific 
aspects of the selected technologies.

Selection Criteria
Framework selection should take into 
account criteria such as

•	 the development team’s level of 
knowledge of each framework,

•	 the framework type (commercial or 
open source),

•	 the framework’s maturity and level 
of support from its community (if 
it’s open source),

•	 the type of license the framework 
employs and its effects on the de-
sign,6 and

•	 the level of tool support (for exam-
ple, the availability of plug-ins to 
simplify development using frame-
works in popular integrated develop-
ment environments such as Eclipse).

You must also consider the trade-
offs—the consequences for the drivers. 
For example, including a framework 
might affect the binary executable’s 
size. Because frameworks typically in-
clude many functions, they tend to be 
large. If you’re using only a small part of 
the framework, you might ask whether 
the framework justifies the larger ap-
plication size. The framework selection 
could also affect aspects such as the 
project plan. If you select a new frame-
work, the team will need training. If the 
project schedule doesn’t include train-
ing time, this will negatively impact de-
livery dates and project profitability.

No clear criteria exist for determin-
ing when an architect should transition 
from designing with patterns and tactics 
to designing with frameworks. Many ar-
chitects are familiar with several frame-
works. They usually select one when 
they recognize a problem that can be 
addressed by a framework they’re famil-
iar with—for example, Web-based user 
interfaces. Generic frameworks, such as 
enterprise application frameworks, are 
usually selected very early during design 
because they cover many aspects of an 
application. Specialized frameworks are 
typically selected later, when a particu-
lar concern is addressed—for example, 
communicating with devices using a 
specific protocol.

Frameworks’ Relationship  
to Requirements
Constraints are important in framework 
selection. Often, however, important 
constraints aren’t explicitly captured as 
project requirements because they “be-
long” to the development environment. 
An example of this is employee skills—
the development organization doesn’t 

want this constraint to appear in a re-
quirements document.

Certain quality attributes, such as 
testability, also aren’t commonly de-
scribed explicitly. Testability might not 
appear as part of the requirements if 
elicitation activities focus on end-user-
facing requirements. An experienced ar-
chitect will, however, know that achiev-
ing high quality will require thorough 
testing and will make design decisions 
to support this attribute. An example of 
this decision is in the second iteration in 
Table 2. One possible remedy is to have 
an internal requirements document that 
complements the standard requirements 
specification with information that is 
not visible to customers but still must 
be taken into account.

Frameworks might generate new re-
quirements—for example, if you plan 
on using Ajax (Asynchronous Java
Script and XML), then your customers 
will need a Web browser that supports 
JavaScript. In this way, frameworks 
can limit your architecture design op-
tions. However, they might also cre-
ate new opportunities, introducing 
the possibility of new features. For 
example, suppose an architect selects 
a GUI framework that automatically 
scales and adjusts its layout for differ-
ent display sizes and aspect ratios. The 
organization might decide to capitalize 
on this as an opportunity to deploy the 
interface on mobile phones, even if this 
previously hadn’t been a requirement.

A rchitecture design methods, 
such as ADD, describe an 
idealization of how archi-

tects perform their duties in real proj-
ects. These methods might seem com-
plicated for practitioners who can’t 
easily match abstract design concepts 
to their everyday experience, particu-
larly with respect to technologies. Ex-
tending existing architecture design 
methods to consider frameworks as 
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first-class design concepts is useful to 
overcome this situation. One benefit of 
this approach is that you can directly 
implement the resulting design; you 
don’t have to match the design’s output 
with the implementation technologies.

Although we still need to perform 
a quantitative evaluation of our ap-
proach’s benefits, we’ve applied it in 
several large-scale, real-world projects. 
We’ve observed that it adds clarity and 
transparency to the relationship be-
tween requirements and constraints on 
one hand, and the design outcomes on 
the other. This, in turn, promotes archi-
tects’ adoption of design methods and 
substantially reduces rework time.
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