
46	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Architecture design applies de-
sign decisions to satisfy a set of architec-
tural drivers—the most important func-
tional, quality attribute, and constraint
requirements that shape a system.1 Ar-
chitecture design is notoriously difficult
to learn and even harder to master; good
architects typically have gray hair.

If a process is important and difficult,
a common approach in many fields, in-
cluding software engineering, is to try
to systematize it to ensure predictabil-
ity, repeatability, and high-quality out-
comes. To this end, a number of archi-
tecture design methods have appeared
during the last decade. For example,

attribute-driven design (ADD) provides
detailed steps for architects, including
entry and exit conditions, to perform de-
sign.2 Such methods provide structure to
complex, often daunting problems.

However, such methods are difficult to
apply because they deal in abstractions.
For example, ADD primitives are tactics
and patterns, whereas architects daily
deal with additional primitives including
commercial frameworks such as JavaSer-
ver Faces, Spring, Hibernate, and Axis.

Here, we present a more realistic,
holistic approach to architecture de-
sign. It starts with architecturally sig-
nificant requirements—drivers and
constraints. It then systematically links
them to design decisions and systemati-
cally links those decisions to the imple-
mentation options available through
commercial frameworks.

We stress the importance of consid-
ering technologies—specifically frame-
works—as first-class design concepts.
We illustrate this through a real-world
case study that highlights how frame-
works are selected within ADD itera-
tions and how architectural drivers are
connected to the selection of frame-
works. Initial qualitative results have
been obtained from the successful ap-
plication of this approach in several
projects in a large software develop-
ment company in Mexico City.

Design Decisions
Architectural design is performed by
applying design decisions to satisfy a
set of architecturally significant re-
quirements, typically called architec-
tural drivers. Architecture design deci-
sions fall under several categories.

Allocation of Responsibilities
The allocation of responsibilities in-
volves identifying the important re-
sponsibilities, including basic system
functions, architectural infrastruc-
ture, and satisfaction of quality at-
tributes and determining how these

FOCUS: Twin Peaks

A Principled
Way to Use
Frameworks
in Architecture
Design
Humberto Cervantes, Autonomous Metropolitan University, Mexico City

Perla Velasco-Elizondo, Autonomous University of Zacatecas

Rick Kazman, University of Hawaii

// A holistic approach for architecture design

uses both top-down concepts and implementation

artifacts, which are bottom-up concepts. In doing

so, it reduces the mismatch between the abstract

concepts generally found in existing design methods

and the technical ones architects use every day. //

	 March/April 2013 | IEEE Software � 47

responsibilities are allocated to non-
runtime and runtime elements.

Coordination Model
The coordination model involves iden-
tifying the elements of the system that
must coordinate (or are prohibited
from coordinating), determining the
properties of the coordination, such as
timeliness, currency, completeness, cor-
rectness, and consistency, and choosing
the communication mechanisms that
realize those properties.

Data Model
The data model involves choosing the
major data abstractions, their opera-
tions, and their properties, organizing
the data, and compiling any metadata
needed for consistent interpretation.

Management of Resources
The management of resources involves
identifying the resources that must be
managed and determining the limits
of each, determining which system el-
ements manage each resource, how re-
sources are shared, and the strategies
employed when there’s contention for
or saturation of resources.

Mapping among Architectural Elements
The mapping among architectural ele
ments involves the mapping of mod-
ules and runtime elements to each
other—that is, the runtime elements
that are created from each module;
the modules that contain the code for
each runtime element; the assignment
of runtime elements to processors;
the assignment of items in the data
model to data stores; and the mapping
of modules and runtime elements to
units of delivery.

Binding Time Decisions
The binding time decisions involve es-
tablishing the point of time in the life
cycle and the mechanism for achieving
a variation in an architectural decision.

Binding time decisions introduce allow-
able ranges of variation; each of the de-
cisions in the other six categories have
an associated binding time decision.
This variation can be bound at differ-
ent times in the software life cycle by
different entities—from design time by
a developer to runtime by an end user.

Technology Choice
Technology choice involves

•	 deciding which technologies are
available to realize the decisions
made in the other categories;

•	 determining whether the available
tools to support this technology
choice (IDEs, simulators, testing
tools, and so on) are adequate for
development to proceed;

•	 determining the extent of inter-
nal familiarity and external sup-
port available for the technology
(courses, tutorials, examples, and
availability of contractors);

•	 determining the side effects of
choosing a technology, such as a re-
quired coordination model or con-
strained resources; and

•	 determining whether a new tech-
nology is compatible with the exist-
ing stack.

This final category is critical to sys-

tem success. It is ubiquitous—every ar-
chitect of every system must make this
choice or deal with its consequences if
it’s given as a constraint—and fraught
with uncertainty. Ideally, an architec-
ture design method should help re-
duce this uncertainty. However, most

methods don’t provide guidance for
technology choices.3

To illustrate this, consider ADD,
which is a well-established method for
designing an architecture.2 ADD com-
prises the following steps:

	 1.	Confirm that the requirements in-
formation is sufficient.

	 2.	Choose a system element to
decompose.

	 3.	Identify candidate architectural
drivers.

	 4.	Choose a design concept (patterns
and tactics) that satisfies the drivers.

	 5.	Instantiate architectural elements
and allocate responsibilities.

	 6.	Define interfaces for the instanti-
ated elements.

	 7.	Verify and refine requirements and
make them constraints for instanti-
ated elements.

	 8.	Repeat these steps for the next
element.

Step 4 is critical. Architecture pat-
terns and tactics guide the architect
from these key requirements to a de-
sign concept. Consider, for example,
the tactics hierarchy for the quality at-
tribute of performance (see Figure 1).
An architect designing a high-perfor-
mance system is guided from coarse-
grained requirements, such as con-

trolling the demand for or managing
resources, to specific tactics, such as
managing the sampling rate, intro-
ducing concurrency, and bounding
queue sizes. On this basis, an archi-
tect might then choose a pattern that
instantiates these tactics, such as

Most methods don’t provide guidance
for technology choices.

48	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

Concurrent Pipelines, Leader/Follow-
ers, or Thread Pool.4

But where to from there? At some
point, architects must choose a set of

technologies and, more specifically,
frameworks to instantiate system as-
pects (such as user interface develop-
ment and persistence).

Frameworks as First-Class
Design Concepts
Frameworks incorporate many pat-
terns and tactics. (For more on frame-
works, see the sidebar.) Mapping
these patterns and tactics onto the
ones employed in the architecture de-
sign—the output of ADD—might not
be straightforward. For example, the
.NET framework provides services for
clustering, load balancing, implement-
ing a RAID (redundant array of inde-
pendent disks), rolling upgrades, and
so forth. What’s the relationship be-
tween these services and the patterns
and tactics that address performance?

Our answer is that patterns and tac-
tics typically instantiate the services
that frameworks provide. For this rea-
son, frameworks need to be considered
first-class concepts during design. Ar-
chitects must recognize this. In doing
so, they simultaneously design both
top-down, using abstract patterns and
tactics, and bottom-up, by selecting
concrete realizations of those design
concepts within frameworks.

A Case Study
To illustrate the value of using frame-
works as first-class concepts in design
methods, we present a case study of the
greenfield development of a system to
buy bus tickets. This is a typical enter-
prise application in which many users
interact with the system through Web
browsers or mobile apps. They perform
processes, such as checking bus sched-
ules, that act according to information
from a database.

Before starting architecture design,
the development team elicited and ana-
lyzed these architectural drivers:

•	 Primary use cases constitute a sub-
set of the system’s use cases that
describe the critical functionality
needed for achieving the system’s
most important business goals.

•	 Quality attribute scenarios

Performance tactics

Control resource demand Manage resources

Manage sampling rate

Events
arrive

Response
generated within
time contraints

Limit event response

Prioritize events

Reduce overhead

Bound execution times

Increase resource
ef�ciency

Increase resources

Introduce concurrency

Maintain multiple
copies of computations

Maintain multiple
copies of data

Bound queue sizes

Schedule resources

Figure 1. The tactics hierarchy for the quality attribute of performance. Each tactic is an

architectural design primitive aimed at either controlling the demand for a resource or for

managing the resource. (Reprinted by permission of Pearson Education.1)

Ta
b

l
e

 1 The architectural drivers for a system
for buying bus tickets.

Driver Description

Primary
use cases

Buy ticket
Search timetables

Quality
attribute
scenarios
(ordered by
priority)

Performance. A user performs a timetable search during peak load (5,000
users are accessing the system); the system processes the query in
under 10 seconds.

Security. A user submits personal data in a form; 100 percent of this data is
transferred and stored using encryption.

Usability. A user fills out a form incorrectly. After submitting, the system high-
lights all erroneous fields and provides instructions for correcting them.

Modifiability. A developer adds a user interface language to the system during
maintenance. The language is added successfully and no recompiling is
necessary.

Constraints The initial release’s time to market is six months.
The system must be compatible with Internet Explorer 8+, Firefox 3+,

Chrome 6+, and Safari 5+.
The system must support access from iOS and Android in a later release.
The system must work with a legacy relational database for which the cus-

tomer had acquired a license.
The development team is small and has experience in Java, JavaServer

Faces, Spring, and Hibernate.

	 March/April 2013 | IEEE Software � 49

describe quality attribute require-
ments in terms of the system’s re-
sponses to specific stimuli in a mea-
surable way.

•	 Constraints limit the space of de-
sign and implementation decisions.

Table 1 shows the results.
The architect employed ADD, fol-

lowing the steps we listed earlier, and
he also used patterns4 and tactics2

catalogs. Table 2 summarizes the ini-
tial iterations of the design process per-
formed by the architect.

The first iteration aimed to de-
compose the entire system (ADD step
2). This was because this system was
greenfield development, and the pri-
mary concern was to define the overall
system structure and allocate respon-
sibilities to elements that team mem-
bers could develop independently. The

drivers for this iteration (ADD step
3) included the constraints 1.1–1.4 in
Table 2. The architect decided to cre-
ate a layered system that separated user
interface aspects from the rest of the
system. This would allow easy support
for access through Web browsers or
mobile devices as the system evolved.
The architect created a presentation
layer, a business logic layer, and a data-
base access layer that aimed to isolate

Frameworks
A framework is a reusable software element that provides generic
functionality, addressing recurring concerns across a range of ap-
plications. Frameworks increase productivity by letting program-
mers focus on business logic and end-user value rather than un-
derlying technologies.

Frameworks abstract some combination of application, lan-
guage, hardware, networking, storage, or operating system
characteristics. One aim of abstraction is to reduce the cognitive
burden on the programmer, who needs to learn only the frame-
work rather than all the underlying details. The abstractions should
change more slowly than the details, easing portability and evo-
lution. Moreover, these abstractions, being shared among many
systems, will more likely be heavily tested, reducing or entirely
eliminating classes of bugs.

You can use frameworks by either incorporating or extending
the functionality they provide. For example, a programmer might
use existing widgets from a GUI framework to build a user inter-
face. He or she might, however, not find exactly the right widgets
with the right functionality. In that case, the programmer might
choose to extend an existing widget to augment its default func-
tionality through mechanisms such as inheritance or configuration
options such as XML files or annotations. This extension wouldn’t
actually modify the framework (which typically isn’t allowed).

Software frameworks are related to patterns and tactics in that
frameworks instantiate these concepts. The patterns and tactics
that a framework instantiates allow particular quality attributes to
be satisfied.

Consider Hibernate, a popular object-relational mapping frame-
work. Hibernate instantiates several patterns, including Identity
Field, Metadata Mapping, Lazy Load, and Unit of Work1—as well
as tactics for promoting modifiability and performance. Object-
relational mapping hides the fact that an object model persists in

a relational database. Mappers achieve this by isolating the code
that translates between these two models, which is an instance of
the modifiability tactic of increasing semantic coherence. Further-
more, the mapper is typically parameterized through configuration
files, which is an instance of the modifiability tactic of deferring
binding. Hibernate also implements tactics that promote perfor-
mance; these include resource management tactics such as fetch-
ing strategies and using caches.2

Another example of design concept instantiation is Spring, an
extensive framework for developing enterprise applications. At its
core lies the container, a mechanism that lets developers create
and connect components—beans—using the Dependency Injec-
tion pattern.3 Spring instantiates such patterns as Abstract Fac-
tory, Prototype, and Proxy.4

Spring also instantiates tactics: using an intermediary and
deferring binding promote modifiability, introducing concurrency
promotes performance, and exception handling and transactions
promote availability.

Other examples of frameworks in widespread use include JEE
(Java Enterprise Edition), .NET, MCF (Meta Content Framework),
Oracle ADF (Application Development Framework), Cocoa, Ruby on
Rails, iBatis, and JUnit.

References
	 1.	 M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley

Professional, 2002.
	 2.	 G. King et al., “Improving Performance,” Hibernate—Relational Persistence

for Idiomatic Java, Red Hat Middleware, 2004; http://docs.jboss.org/
hibernate/orm/3.3/reference/en/html/performance.html.

	 3.	 M. Fowler, “Inversion of Control Containers and the Dependency Injection
Pattern,” blog, 23 Jan. 2004; http://martinfowler.com/articles/injection.
html.

	 4.	 E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1994.

50	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

the object-oriented system from per-
sistence details in the relational data-
base. Finally, the architect employed
the Domain Objects pattern to allocate
modules to the development team. Ele-
ments derived from the domain model
were used to decompose the layers into
modules that could be concurrently
developed.

For the second iteration, the archi-
tect established a coordination model
among the domain objects to support
the primary use cases. The domain ob-
jects became the elements to decom-
pose; the primary use cases became the
drivers. The architect specialized the
domain objects using patterns accord-
ing to their layer. In the presentation
layer, domain objects were responsible
for receiving user input and displaying
information. In the business logic layer,
domain objects became application
services. In the database access layer,

domain objects became data mappers.
To promote testability, the architect
also applied the tactic of separating the
interface from the implementation. The
system requirements didn’t explicitly
state this requirement, but the architect
knew from experience that supporting
it was critical.

For the third iteration, the architect
wanted to achieve the performance sce-
nario in Table 1. He focused first on the
database access layer. He improved per-
formance by using the Lazy Load pat-
tern to avoid retrieving unnecessary in-
formation from the database when an
object with dependencies was retrieved.
Although this decision promotes per-
formance, by itself it’s insufficient be-
cause other factors affect performance,
such as dispatching multiple requests
simultaneously.

So, to achieve the performance sce-
nario, the architect made decisions

elsewhere in the system. For example,
in the fourth iteration, he applied the
tactic of introducing concurrency on
the business logic layer to support si-
multaneous requests along with trans-
actions and their associated isolation
levels. Design continued for additional
iterations to satisfy the other drivers,
such as security. The final result was
an elegant design—one that satisfied
all the drivers—that was still based
on solid conceptual foundations and a
proven design method.

At this juncture, the architect faced
a challenge: How would he map exist-
ing frameworks to the previously pro-
duced design? This activity isn’t always
straightforward because a mismatch
frequently occurs between the patterns
and tactics that the frameworks incor-
porate and the ones selected in the de-
sign. For example, consider the busi-
ness logic layer (iteration 4 in Table 2),

Ta
b

l
e

 2 Five of the initial design iterations.

Iteration Drivers (ADD step 3)
Element to decompose
(ADD step 2)

Design decisions
(ADD step 4) Rationale

1 1.1. Web access and future
support for mobile-app
constraints

1.2. Object-oriented system
(Java) and relational
database constraints

1.3. Small development team
1.4. Time-to-market constraint

The system as a whole Layers pattern Promotes 1.1

Database Access Layer pattern
Domain Model pattern

Influenced by 1.2

Domain Objects pattern Influenced by 1.3 and 1.4

2 2.1. Primary use cases
2.2. Testability

Layers User Interface Domain Objects
pattern

Application Service pattern
Data Mapper pattern

Enables 2.1

Separate-interface-from-
implementation tactic

Promotes 2.2

3 3.1. Performance scenario
3.2. Search timetables use case

Database access layer Lazy Load pattern Promotes 3.1
Enables 3.2

4 4.1. Performance scenario
4.2. Primary use cases

Business logic layer Introduce-concurrency-
tactic-through-Leader/
Followers pattern

Transactions tactic

Promotes 4.1
Enables 4.2

5 5.1. Security scenario Database access layer Maintaining-data-
confidentiality tactic

Promotes 5.1

	 March/April 2013 | IEEE Software � 51

where the architect employed the tactic
of introducing concurrency by creat-
ing a thread pool using the Leader/Fol-
lowers pattern, which could affect ad-
ditional components and relationships.
Suppose the architect uses Spring to
implement the design. In Spring, you
can easily introduce concurrency by
annotating the source code. When the
architect selects Spring, some compo-
nents and relationships previously de-
signed for the Leader/Followers pattern
become unnecessary, so a mismatch
appears in the architecture. To correct
this situation, the architect must revisit
the design, which at this point might
already be partially documented, and
modify it to reflect the changes necessi-
tated by the framework. However, this
results in unnecessary rework.

Applying Our Approach to the Case Study
You can overcome the problem of map-
ping a purely conceptual design to
the frameworks that implement it by
considering technologies, and specifi-
cally frameworks, as first-class design

concepts up front—that is, frameworks
must be considered jointly with pat-
terns and tactics during architectural
design. This is particularly worthwhile
in domains such as the one in our case
study, because many frameworks exist
to address such systems’ design objec-
tives, supporting many quality attri-
bute concerns such as security, concur-
rency, and distribution.

Table 3 shows how the design pro-
cess can be performed after frameworks
are adopted as first-class design con-
cepts. In iteration 2, the architect se-
lected several frameworks that address
objectives in the layers. Many frame-
works exist for addressing domains
such as Web-based user interfaces (for
example, JavaServer Faces or Struts) or
object-oriented models’ persistence into
relational databases (for example, Hi-
bernate or iBatis). However, the archi-
tect selected frameworks on the basis of
two of the constraints in Table 3: team
experience with frameworks and time
to market. These constraints compli-
cated and restricted the selection pool of

frameworks because the learning curve
for frameworks introduces risk. This
list of constraints, however, is small; in
general, you will likely consider many
criteria when selecting frameworks.

The choice of framework will affect
further iterations. For example, deci-
sions to satisfy the performance sce-
nario in Table 3’s third iteration dif-
fer from those in Table 2. In Table 3,
because the architect chose Hibernate
as the persistence framework, he ad-
dressed performance by configuring
the provided framework parameters.5
In this case, Hibernate incorporates
the Lazy Load pattern but also incor-
porates tactics such as support for a
cache (an instance of the tactic of main-
taining multiple copies) that allow im-
proved performance.

As in Table 2, design continues
along other iterations. For Table 3,
however, design decisions at each itera-
tion range from selecting new patterns
and tactics to configuring options pro-
vided by the frameworks selected in
previous iterations.

Ta
b

l
e

 3 Three design iterations using frameworks as part of the design process.

Iteration Drivers (ADD step 3)
Element to decompose
(ADD step 2)

Design decisions
(ADD step 4) Rationale

1 1.1 Web access and future
support for mobile-app
constraints

1.2 Object-oriented system
(Java) and relational
database constraints

1.3 Small development team
1.4 Time-to-market constraint

The system as a whole Layers pattern Promotes 1.1

Database Access Layer pattern
Domain Model pattern

Influenced by 1.2

Domain Objects pattern Influenced by 1.3 and 1.4

2 2.1 Primary use cases
2.2 Testability
2.3 Team experience with

framework constraint
1.4 Time-to-market constraint

Layers Application Service pattern Enables 2.1

Separate-interface-from-
implementation tactic

Promotes 2.2

JavaServer Faces, Spring,
and Hibernate
frameworks

Influenced by 2.3 and 2.4

3 3.1 Performance scenario
3.2 Search timetables use case

Database access layer Use Hibernate’s support for
lazy associations

Use Hibernate’s cache
support

Promotes 3.1
Enables 3.2

52	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

Discussion
Our approach has been applied suc-
cessfully in several projects in a large
company in Mexico City that develops
software for government and private
customers.

Observed Benefits
Using our approach simplified the
adoption of a method for systematic
design—in this case, ADD. The
company’s architects had never
received theoretical training on
architecture and were oriented toward
selecting technologies rather than using
a method. Seeing how the knowledge
they already had could fit in the method
greatly helped them embrace it.

Also, design activities now produce
architectures that can be implemented
more straightforwardly, preventing
mismatch and thus avoiding rework.

In addition, architecture design
produces an executable architecture
in addition to documentation (http://
epf.eclipse.org/wikis/abrd/core.tech.
common.ex tend_ supp/gu idances /
concepts/executable_arch_D4E68CBD.
html). This executable architecture is use-
ful for testing, evaluation, and training.

Finally, during architectural evalu-
ations, the evaluation team—other ar-
chitects from the company—frequently
uncovers risks associated with specific
aspects of the selected technologies.

Selection Criteria
Framework selection should take into
account criteria such as

•	 the development team’s level of
knowledge of each framework,

•	 the framework type (commercial or
open source),

•	 the framework’s maturity and level
of support from its community (if
it’s open source),

•	 the type of license the framework
employs and its effects on the de-
sign,6 and

•	 the level of tool support (for exam-
ple, the availability of plug-ins to
simplify development using frame-
works in popular integrated develop-
ment environments such as Eclipse).

You must also consider the trade-
offs—the consequences for the drivers.
For example, including a framework
might affect the binary executable’s
size. Because frameworks typically in-
clude many functions, they tend to be
large. If you’re using only a small part of
the framework, you might ask whether
the framework justifies the larger ap-
plication size. The framework selection
could also affect aspects such as the
project plan. If you select a new frame-
work, the team will need training. If the
project schedule doesn’t include train-
ing time, this will negatively impact de-
livery dates and project profitability.

No clear criteria exist for determin-
ing when an architect should transition
from designing with patterns and tactics
to designing with frameworks. Many ar-
chitects are familiar with several frame-
works. They usually select one when
they recognize a problem that can be
addressed by a framework they’re famil-
iar with—for example, Web-based user
interfaces. Generic frameworks, such as
enterprise application frameworks, are
usually selected very early during design
because they cover many aspects of an
application. Specialized frameworks are
typically selected later, when a particu-
lar concern is addressed—for example,
communicating with devices using a
specific protocol.

Frameworks’ Relationship
to Requirements
Constraints are important in framework
selection. Often, however, important
constraints aren’t explicitly captured as
project requirements because they “be-
long” to the development environment.
An example of this is employee skills—
the development organization doesn’t

want this constraint to appear in a re-
quirements document.

Certain quality attributes, such as
testability, also aren’t commonly de-
scribed explicitly. Testability might not
appear as part of the requirements if
elicitation activities focus on end-user-
facing requirements. An experienced ar-
chitect will, however, know that achiev-
ing high quality will require thorough
testing and will make design decisions
to support this attribute. An example of
this decision is in the second iteration in
Table 2. One possible remedy is to have
an internal requirements document that
complements the standard requirements
specification with information that is
not visible to customers but still must
be taken into account.

Frameworks might generate new re-
quirements—for example, if you plan
on using Ajax (Asynchronous Java
Script and XML), then your customers
will need a Web browser that supports
JavaScript. In this way, frameworks
can limit your architecture design op-
tions. However, they might also cre-
ate new opportunities, introducing
the possibility of new features. For
example, suppose an architect selects
a GUI framework that automatically
scales and adjusts its layout for differ-
ent display sizes and aspect ratios. The
organization might decide to capitalize
on this as an opportunity to deploy the
interface on mobile phones, even if this
previously hadn’t been a requirement.

A rchitecture design methods,
such as ADD, describe an
idealization of how archi-

tects perform their duties in real proj-
ects. These methods might seem com-
plicated for practitioners who can’t
easily match abstract design concepts
to their everyday experience, particu-
larly with respect to technologies. Ex-
tending existing architecture design
methods to consider frameworks as

	 March/April 2013 | IEEE Software � 53

first-class design concepts is useful to
overcome this situation. One benefit of
this approach is that you can directly
implement the resulting design; you
don’t have to match the design’s output
with the implementation technologies.

Although we still need to perform
a quantitative evaluation of our ap-
proach’s benefits, we’ve applied it in
several large-scale, real-world projects.
We’ve observed that it adds clarity and
transparency to the relationship be-
tween requirements and constraints on
one hand, and the design outcomes on
the other. This, in turn, promotes archi-
tects’ adoption of design methods and
substantially reduces rework time.

References
	 1.	 L. Bass, P. Clements, and R. Kazman,

Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012.

	 2.	 R. Wojcik et al., Attribute-Driven Design Ver-
sion 2.0, tech. report CMU/SEI-2006-TR-023,
Software Eng. Inst., Carnegie Mellon Univ.,
2006.

	 3.	 C. Hofmeister et al., “A General Model of
Software Architecture Design Derived from
Five Industrial Approaches,” J. Systems and
Software, vol. 80, no. 1, 2007, pp. 106–126.

	 4.	 F. Buschmann, K. Henney, and D. Schmidt,
Pattern-Oriented Software Architecture, Vol-
ume 4: A Pattern Language for Distributed
Computing, John Wiley & Sons, 2007.

	 5.	 G. King et al., “Improving Performance,” Hi-
bernate—Relational Persistence for Idiomatic
Java, Red Hat Middleware, 2004; http://docs.
jboss.org/hibernate/orm/3.3/reference/en/
html/performance.html.

	 6.	 I. Hammouda et al., “Open Source Legal-
ity Patterns: Architectural Design Decisions
Motivated by Legal Concerns,” Proc. Int’l
Academic MindTrek Conf.: Envisioning
Future Media Environments, ACM, 2010, pp.
207–214.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Humberto Cervantes is a professor of software engineering at
the Autonomous Metropolitan University, Mexico City. He’s also a visit-
ing researcher at Quarksoft, the company where the method discussed
in this article was applied. His research interests include software
architecture design methods and their adoption in industrial settings.
Cervantes received a PhD in software engineering from Université
Joseph Fourier. Contact him at hcm@xanum.uam.mx.

Perla Velasco-Elizondo is a professor of software engineer-
ing at the Autonomous University of Zacatecas. Her research interests
include software composition, architecture-centered software develop-
ment, and software engineering education. Velasco-Elizondo received
a PhD in computer science from the University of Manchester. Contact
her at pvelasco@uaz.edu.mx.

Rick Kazman is a professor of information technology management
at the University of Hawaii and a principal researcher at Carnegie Mel-
lon University’s Software Engineering Institute. His primary research
interests are software architecture, design and analysis tools, software
visualization, and software engineering economics. Kazman received a
PhD in computer science from Carnegie Mellon University. He’s a senior
member of IEEE. Contact him at kazman@hawaii.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

PURPOSE: The IEEE Computer Society is the
world’s largest association of computing
professionals and is the leading provider of
technical information in the field. Visit our
website at www.computer.org.
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 13–14 June 2013,
Seattle, WA, USA

EXECUTIVE COMMITTEE
President: David Alan Grier
President-Elect: Dejan S. Milojicic; Past President:
John W. Walz; VP, Standards Activities: Charlene
(“Chuck”) J. Walrad; Secretary: David S. Ebert;
Treasurer: Paul K. Joannou; VP, Educational
Activities: Jean-Luc Gaudiot; VP, Member &
Geographic Activities: Elizabeth L. Burd (2nd
VP); VP, Publications: Tom M. Conte (1st VP);
VP, Professional Activities: Donald F. Shafer; VP,
Technical & Conference Activities: Paul R. Croll;
2013 IEEE Director & Delegate Division VIII: Roger
U. Fujii; 2013 IEEE Director & Delegate Division
V: James W. Moore; 2013 IEEE Director-Elect &
Delegate Division V: Susan K. (Kathy) Land

BOARD OF GOVERNORS
Term Expiring 2013: Pierre Bourque, Dennis J.
Frailey, Atsuhiro Goto, André Ivanov, Dejan S.
Milojicic, Paolo Montuschi, Jane Chu Prey, Charlene
(“Chuck”) J. Walrad
Term Expiring 2014: Jose Ignacio Castillo
Velazquez, David. S. Ebert, Hakan Erdogmus, Gargi
Keeni, Fabrizio Lombardi, Hironori Kasahara, Arnold
N. Pears
Term Expiring 2015: Ann DeMarle, Cecilia Metra,
Nita Patel, Diomidis Spinellis, Phillip Laplante, Jean-
Luc Gaudiot, Stefano Zanero

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate
Executive Director & Director, Governance:
Anne Marie Kelly; Director, Finance &
Accounting: John Miller; Director, Information
Technology & Services: Ray Kahn; Director,
Membership Development: Violet S. Doan;
Director, Products & Services: Evan Butterfield;
Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700,
Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720 • Phone: +1 714 821 8380 •
Email: help@computer.org
Membership & Publication Orders
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 •
Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-
Aoyama, Minato-ku, Tokyo 107-0062, Japan •
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 •
Email: tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President: Peter W. Staecker; President-Elect:
Roberto de Marca; Past President: Gordon
W. Day; Secretary: Marko Delimar; Treasurer:
John T. Barr; Director & President, IEEE-USA:
Marc T. Apter; Director & President, Standards
Association: Karen Bartleson; Director & VP,
Educational Activities: Michael R. Lightner; Director
& VP, Membership and Geographic Activities:
Ralph M. Ford; Director & VP, Publication Services
and Products: Gianluca Setti; Director & VP,
Technical Activities: Robert E. Hebner; Director &
Delegate Division V: James W. Moore; Director &
Delegate Division VIII: Roger U. Fujii

revised 22 Jan. 2013

