Deriving Functional Interface Specifications for
Composite Components

Perla Velasco Elizondo! and Mbe Koua Christophe Ndjatchi?

1 Centre for Mathematical Research (CIMAT), Zacatecas, Zac., 98060, Mexico
2 Polytechnic University of Zacatecas (UPZ), Fresnillo, Zac., 99059, Mexico

Abstract. An interface specification serves as the sole medium for component
understanding and use. Current practice of deriving these specifications for com-
posite components does not give much weight to doing it systematically and
unambiguously. This paper presents our progress on developing an approach
to tackle this issue. We focus on deriving functional interface specifications for
composite components, constructed via composition operators. In our approach,
the composites’ interfaces are not generated in an ad hoc manner via delegation
mechanisms, but are derived systematically, consistently and largely automati-
cally via a set of functions on the functional interfaces of the composed compo-
nents. Via an example, we illustrate the aforementioned benefits as well as the
fact that our approach provides a new view into the space of interface generation.

1 Introduction

A component’s interface specification, or a component specification for short, defines
the component and serves as the sole medium for its understanding and use by answer-
ing questions such as: What services are provided and required by the component?,
How can these services be used?, What quality characteristics do the offered services
fulfill? And so on. There is a common agreement about the information elements that
a component specification should include [Sl1]]: (i) the instantiation mechanisms, (ii)
the functional properties, i.e. the component’s provided and required services, (iii) the
non-functional properties, i.e. the component’s quality attributes and (iv) the context
dependencies, i.e. the information about the component’s deployment environment. In-
dependently from their form, all these elements are crucial for setting up and validating
a component composition.

The idea of constructing composite components is recognised as a good practice in
component-based development (CBD) because it is a means to maximise reuse [6]]. By
composite components we mean reusable general-purpose components made up of an
assembly of two or more atomic componentsﬂ The issue of being a composite should
be transparent for a user, as the composite should be utilised in the same manner as
an atomic one. Thus, the availability of the specification of a composite component
is crucial to allow its reuse, as it is the ability to consistently derive it to scale the
development techniques of any CBD approach.

Ideally, the information of a composite’s specification should be derived from the
specifications of its constituents and the semantics of their composition [1116]]. Unfor-
tunately, current practice of deriving specifications for composite components does not

! We consider an atomic component the most basic kind of component in a component model.

S. Apel and E. Jackson (Eds.): SC 2011, LNCS 6708, pp. 1 2011.
(© Springer-Verlag Berlin Heidelberg 2011

2 P. Velasco Elizondo and M.K.C. Ndjatchi

give much weight to doing so in a more systematic and unambiguous manner. This
paper, besides extending our previous work, presents our progress on developing an
approach to tackle this issue.

We have introduced an approach to CBD and demonstrated the construction of com-
posite components in practice, e.g. [[13]. In this approach composites are constructed
via composition operators. Previously, the process of composites’ interface generation
was vaguely outlined, required a lot of human intervention and resulted in interfaces
with only one service, which is not natural for the users of the composites. Thus, in this
paper we present an approach where the composites’ interfaces are derived considering
both, the functional specifications of their constituents and the semantics of the opera-
tors utilised in their composition. The main contribution in this piece of work is a set of
operator-specific functions to support an approach for consistently deriving functional
interface specifications instead of generating them in an ad hoc manner via delegation
mechanisms. Via an example we will show that our approach (i) provides a new view
into the space of interface generation, which increases the number of services offered by
a composite, (ii) has simple but formal algebraic basis, which makes interface deriva-
tion more precise, consistent and systematic and (iii) can be largely automated, which
mitigates derivation effort.

This paper is organised as follows. In Section 2 we discuss composite components
in current CBD approaches. In Section[3l we review the foundations of this work. Next,
we present some of the defined functions to generate the functional specification of
composite components. In Section 3l we demonstrate the use of these functions via
an example. In Section [@ we discuss the benefits of our approach and briefly survey
relevant related work. Finally, in Section[Z} we state the conclusions and future work.

2 Composite Components in CBD Approaches

The idea of constructing reusable composite components has been recognised as a good
practice in CBD. However, it is not a trivial task. We believe that a fundamental issue to
enable their generation is the availability of an algebraic approach to composition. That
is, an approach that when putting components together in some way, results in a new
component that preserves some of the properties of its constituents. The lack of such an
approach might be the reason why, although component composition is supported, only
in some CBD methods it enables the construction of reusable composites [8]].

To clarify the former, consider composition in JavaBeans [2/8]]. In JavaBeans beans
(i.e. atomic components) are Java classes which adhere to design and syntactic con-
ventions. These conventions make their storage, retrieval and visual composition pos-
sible. When components are composed, the resulting “composition” takes the form of
an adaptor classi However, this class does not preserve the properties of a bean class;
it does not correspond to an entity that can be specified in terms of its properties, its
events and its methods as it can be done for its constituent beans. As a corollary, the
adaptor class cannot be stored, retrieved and (re)used as a bean class can.

There are CBD approaches that are closer to our notion of composite components.
Howeyver, there are still some issues that make it difficult to formalise a method to
consistently specify them. For example the Koala component model [2I8]], which is used

2 In JavaBeans, an adaptor class is a wrapper class utilised to wire the composed components.

Deriving Functional Interface Specifications for Composite Components 3

in the consumer electronics domain, supports the construction of composites from pre-
existing specifications. Specifications are written in some sort of definition language and
can be stored in and retrieved from a repository to be reused for composite component
definition. Koala supports the specification of various elements relevant to a component.
In the example depicted in Fig. [l we focus on the provided and required services (i.e.
the functional properties), as they are the target of the work presented in this paper.
Fig.[Ilshows (a) the ITuner interface specification, (b) the CTunerDriver component
specification —in terms of a set of pre-existing interface specifications (e.g. ITuner), (c)
the CTVPlatform composite component specification —in terms of a set of pre-existing
component specifications (e.g. CTunerDriver) and (d) the CTVPlat form composite’s
graphical representation in Koala notation.

(c) component CTVPlatform{ (d)
provides IProgram pini;
, provides IMem pos;
(a) interface ITuner{ requires II2c fast;
void SetFrequency (int f); contains
int GetFrequency(void); component CFrontEnd cfre;
component CTunerDriver ctun;
component CMemDriver cmem;

connects L
(b) component CTunerDriver(pini = cfre.pini;
provides ITuner ptun; pos = cmem.pos;
. IInit pini; cfre.rtun = ctun.ptun;
requires II2c ri2c; cmem.rif = ctun.pini;
ctun.ri2c = fast;

v
E Provided interface
@ Required interface

Fig. 1. (a) An interface, (b) an atomic and (c) a composite component specifications and (d) a
composite component’s graphical representation in Koala

We already mentioned the idea of consistently generating composites’ functional
specifications from the information in the functional specifications of their constituent
components as well as the semantics of their composition. We consider that this is not
achieved in Koala at all. The CTvPlatform composite is specified in the same manner
in which its constituents are (i.e. it defines its functionality in terms of a set of pre-
existing interfaces). However, the exposed interfaces ITProgram, IMem and II2c result
from manually forwarding them, via delegation mechanisms, from the inner compo-
nents to the enclosing one according to the developer’s needsH This is in contrast to
doing so based on the semantics of the components and their composition.

We also observe that, because of the manner in which they are generated, the possi-
bility of reusing these composites in a different development is limited. An alternative
to generate a highly-reusable composite is that of providing a mean to invoke a number
of valid sequences of services offered by its constituents [[6]. By adopting a composition
approach as the one depicted in Fig.[Il not all the constituents’ services are available
to invoke in the resulting composite if the constituents’ interfaces have not been for-
warded, e.g. the ptun interface. Although it is useful for the construction of certain
types of composites, this ad hoc manner of hiding and exposing the constituents’ in-
terfaces could represent a shortcoming for maximising reuse. Note, however, that by

3 This method follows the semantics of delegation operators in UML 2.0.

4 P. Velasco Elizondo and M.K.C. Ndjatchi

forwarding all the constituents’ interfaces, which can be a remedy to fix the aforemen-
tioned situation, one could violate the composition semantics as it could lead to allow
invoking invalid sequences of services.

3 The Foundations of This Work

The composites for which our approach is meant to work are constructed according to
the semantics of a new component model [7]. In this model components are passive and
general-purpose. They have an interface specification and an implementation. The inter-
face describes the component’s provided services (i.e. the functional properties) in terms
of a name, the types of input parameters and the types of output parameters. Addition-
ally, this interface describes the non-functional properties and the deployment context
dependencies related to these services. The implementation corresponds to the services
of the component coded in a programming language. We distinguish between atomic
and composite components. The latter are constructed from atomic (or even compos-
ite) components via composition operators. These operators encapsulate control- and
data-flow schemes; many of them analogous to well-known patterns, e.g. [10l4]. The
operators are first-class units, at both design and implementation time, that admit some
sort of parametrisation to indicate the components they compose and the services that
must be executed in the composed components.

Fig.2lshows a system’s structure in this component model. In this hierarchical struc-
ture, composites can be seen as atomic components and can in turn be a subject of fur-
ther composition by using another operator (see the inner dotted boxes). As in Koala,
the composite’s interface elements (e.g. their provided services) are recreated from a
lower level to an upper level. However, it is done via a composition algebra rather than
via traditional delegation mechanisms.

A catalogue of operators to allow com-
ponent composition within this context has
been presented [14]. The table on the left-
hand side of Fig.[Bllists the operators in the
catalogue. They are organised in (i) adapta-
tion, (ii) basic and (iii) composite operators.
Adaptation operators are unary operators
which adapt the component in the sense that
before any computation takes place inside

1 Atomic Component [System the component, the execution of the control-
@ Composition Operator ® Interface flow scheme encapsulated by the operator is
£-: Composite Component executed first. Basic composition operators

are n-ary operators used to support com-

Fig.2. A system’s structure in the new com- Ponent composition. While basic operators

ponent model provide only one type of control- and data-

flow scheme, composite operators combine

many types. These operators have already been implemented and their usefulness
demonstrated by constructing a variety of prototype systems, e.g. [[13]].

Due to lack of space, we do not explain all the operators in the catalogue. However,

for clarification purposes, we describe the operators that we will use in the example

Deriving Functional Interface Specifications for Composite Components 5

in Section [3l The descriptions are in terms of the notation on the right-hand side of
Fig. Bl The dotted boxes represent the resulting assemblies. The computation boxes
represent the computation in the composed/adapted component. Arrows represent the
control-flow. Data required in the assembly to perform the corresponding computation
is denoted as the input label, while the assembly computation result is denoted as the
output label.

@
Type input j,

Guard | [computation 1 i
|

Condition—controlled Loop ; i }

| |computation 2 |,

Counter—controlled Loop | * !
i

¢ |

|

|

|

Adaptation

Delay

Sequencer

Pipe

Selector

Observer

Chain of Responsibility
Exclusive Choice Sequencer
Exclusive Choice Pipe
Simple Merge Sequencer
Simple Merge Pipe

input \/

Basic

output

Composite

Fig. 3. The catalogue of operators and the behaviour of the assemblies resulting from the (a)
Sequencer,(b) Pipe and (c) Guard operators

Both the Sequencer and Pipe composition operators can be used to compose two
or more components, so that the execution of a service in each one of them is carried
out in a sequential order, see Fig.[3l(a) and (b). The Pipe operator also models internal
data communication among the composed units, so that the output generated by the
execution of a component’s service is the input to the next one in the chain. Fig. [
(c) depicts the case of the Guard adaptation operator. Any computation in the adapted
component is conditional upon the value of a Boolean expression (expr) being frue.

Now that we have defined the generalities of our previous work, let us focus on our
approach to derive functional interface specifications.

4 The Proposed Approach

We have outlined a new view of composition where operators are utilised to compose
software components. In general, if a set of atomic components are composed by using
our approach, then the user of the resulting composite should be able to execute a num-
ber of service sequences in terms of the services offered by the composed components.
The nature and number of all possible sequences (i.e. the composite’s services) should
be determined from both the functional specifications of the atomic components and the
semantics of the operator utilised in their composition.

The resulting composite should provide a functional specification informing about
these service sequences. Ideally, the composite’s functional specification should be of-
fered in the same form as that of an atomic component. That is, as a set of provided

6 P. Velasco Elizondo and M.K.C. Ndjatchi

services. Although in this case, these services should be abstractions denoting valid ser-
vice sequences to invoke within the composite’s constituents and their corresponding
requirements and outcomes (i.e. their input and output parameters).

The composition algebra in our composition approach makes it easier to develop a
set of operator-specific functions to specify how to generate the composites’ functional
specifications as outlined above. The semantics of these functions is based on algebra of
sets and first-order predicate logic. Next, we introduce some of these such functionsH

4.1 Basic Formalism and Assumptions

In Section [I] we stated that the functional specification of a component informs about
the services it provides. In most CBD approaches these services are specified as opera-
tion signatures. An operation signature is defined by an operation name and a number
of parameters. Each one of these parameters is defined by a parameter name and a
parameter type. We will denote as Param the parameters in an operation signature.
According to the role that a parameter takes, it is possible to partition the elements in
Param to distinguish among input and output parameters. Based on the former, we
define an operation signature as a tuple (InParam, OutParam) where InParam and
OutParam represent input and output parameters respectively. For simplicity, from
now on we will use the following abbreviations to denote an operation signature (.57g)
and a component’s functional specification (FSpec), i.e. a set of operation signatures:
Sig == (InParam, OutParam) and FSpec == P Sig.

Note that in these definitions we do not make the operation name of the signature
explicit. However, we assume that each operation signature in a F'Spec is associated to
an operation name which works as an identifier for it. Thus, a functional specification
FSpec could contain identical tuples (InParam, OutParam) as long as these tuples
are associated to different operation names.

In this basic formalism we will treat Param and its partitions as bags instead of
sets to allow for duplication of parameters. A composite component could be generated
from a set of instances of the same component type. For example, consider the case
of composing three instances of a Dispenser Component (e.g. one for water, one for
milk and one for coffee) into a Coffee Dispenser composite component. This results
in a composition scenario involving a number of functional specifications F'Spec with
the same operation signatures. When composing these specifications via certain type
of operators, it could be required to have multiple occurrences of the same parame-
ter. Note, however, that we assume that operation signatures are well formed meaning:
Sig == (InParam, OutParam) such that InParam N OutParam = @. We also as-
sume that parameters with the same name and type are semantically equivalent.

Considering the former, we have defined a set of helper and operator-specific func-
tions to derive the functional specifications of composite components. Helper functions
perform part of the computation in operator-specific ones. In this paper we only present
the functions utilised in the example in Section[3l However, detailed descriptions of all
the defined functions can be found in [[15]].

* We assume basic knowledge of set theory, first-order predicate logic and the Z language syntax.

Deriving Functional Interface Specifications for Composite Components 7

4.2 The Helper Functions

The function parameter complement (param comp) maps a group of parameters to
their complementary role, i.e. either input or output. On the other hand, the functions
signature input parameter and signature output parameter (sig in and sig out respec-
tively) get the input and output parameters of an operation signature respectively.

param comp : Param — Param

param comp = pi,DP2,...,Pn € Param e U ~ D;
i=1

sig in, sig out : Sig — Param
s : Sig e sig in(s) = InParam A sig out(s) = OutParam

The function signature concatenation (sig concat) works on a set of operation signa-
tures to generate one whose input and output parameters result from the concatenation
of the input and output parameters on the participating ones. To specify the issue of
having duplicated elements in InParam and OutParam, we use the [+ operator.

sig concat : Sig X ... x Sig — Sig
n n
sig concat = $1,89,..., 8, : Sig e (H—J sig in(s;), H—J sig out(s;))
i=1 i=1
The functions add input parameter and add output parameter (add in and add out

respectively) add input and output parameters to an operation signature respectively.
The function signature (si¢g match) verifies whether there are common elements among
the output parameters of one operation signature and the input parameters of another.
Finally, the function signature bound (sig bound) works on a set of operation signatures
and results in one consisting of the union of the given signatures, but with the parameters
in the participating signatures that are complementary removed.

add in, add out : Param x Sig — Sig
p: Param; s : Sig e

add in(p,s) = ({p Usig in(s)}, sig out(s))A
add out(p,s) = (sig in(s),{p U sig out(s)})

sig match : Sig x Sig — Boolean
sig match = sy, so : Sig e sig out(s1) N sig in(s2) # @
sig bound : Sig X ... x Sig — Sig

sig bound = sy, 82,...,5, : Sig e
({szg in(s1) W
(sig in(s2) \ param comp(sig out(sy))) W
(sig in(s3) \ param comp(sig out(sz))) W
W
(sig in(sp) \ param comp(sig out(sp—1)))}, sig out(s,))

8 P. Velasco Elizondo and M.K.C. Ndjatchi

Now that we have presented the helper functions, next we present the operator-specific
ones.

4.3 The Operator-Specific Functions

The guard composite fspec function generates the functional specification of an as-
sembly created via a Guard operator. Besides the functional specification of the adapted
component, this function also takes one input parameter, which represents the value to
be evaluated by the Guard’s Boolean expression. This parameter is added to the input
parameters of each one of the operation signatures of the adapted component via the
add in helper function.

guard composite fspec : InParam x FSpec — FSpec

guard composite fspec =
81582 -+ Sp : Sig;
f : FSpec;
p : InParam | #p = 1;
n

(Sla 82500 sn) € f d U add Zn(pa Si)
i=1

The seq composite fspec function generates the functional specification of a com-
posite component created via the Sequencer operator. The helper function sig concat,
makes each operation signature contain the input and output parameters of the partici-
pating signatures. Finally, the pipe composite fspec function generates the functional
specification of a composite component created via the Pipe operator. The helper func-
tions sig match and sig bound verify that the signatures in the participating specifica-
tions meet the requirements for internal data communication and remove the
occurrences of the complementary parameters in the resulting signatures respectively.

seq composite fspec : FSpec X ... x FSpec — FSpec

seq composite fspec =

81582 -+ Sp : Sig;
fisfas- oy fn o FSpec;
($1,82,--,8n) EAL X fax ... X[y ®

U sig concat (s, S2, ..., Sn)

(317---73n)EH:L:1 fi
pipe composite fspec : FSpec X ... x FSpec — FSpec

pipe composite fspec =

1<i<i<my

81582 -+ Sp : Sig;

f17f27"'afn:FSpeC;

Vsi,8 € (81,82,...,8.) € fi X fa X ... X f | sig match(s;,s;) e
U sig bound (s, S2,.. ., Sn)

(811""SVL)€H?:1 fl

Next we present the design of some composite components by using these functions.

Deriving Functional Interface Specifications for Composite Components 9

5 Example

We will define some composites meant to be used to construct different versions of a
Drink Vending Machine system (DVM). We chose this simple and small size example
as it is enough to illustrate the use of our functions§ The DVM is limited to two general
actions: (1) to sell a drink and (2) to maintain the dispensers. (1) involves receiving the
customer request and payment as well as delivering the drink. (2) involves filling and
emptying the dispensers of the drinks’ ingredients.

Fig.Hlshows the proposed composites to use in the DVM as well as their behaviours.
Fig.dl (a) shows a Coffee Card Cashier composite, which is made of the Card Reader
(CR) and Billing Component (BC). CR is responsible for getting coffee cards’ identifiers
and BC for debiting the cards. By composing these components with a Pipe P and
a Guard G operators we can generate a composite that, once a coffee card has been
inserted in the coffee machine’s slot and the amount to debit to it has been specified
(e.g. amt), it retrieves the card’s identifier by executing a service in CR (e.g. getCardld).
The obtained result can be passed up via P to G to check its value. If it has a valid value
(e.g. if cardld | = null), then the card can be debited by executing a service in BC (e.g.
debit) and the result can be returned (e.g. errorCode).

The Basic Dispenser composite, shown in

() e amt Fig. M (b), is made up of three instances of the

D) @@ . dispenser component and one Sequencer operator

© il I SQ. A Water (D1), a Coffee (D2) and a Milk Dis-

cardld amt| ____ } penser (D3) have been considered. The composite

if[car T %---allows the sequential execution of one service in

Coffee Card | 1, m each one of these components, e.g. the dispense

\------———F-—-—--*1 service. Shotsl-shots3 denote the number of shots

errCode to be dispensed by each dispenser, while error-

b e i ;{'K‘)’g 2’: goss Codel-errorCode3 deno.te the resulting values of
each one of these executions.

P : Now we describe how we use these compos-
ites in the DVM system. We have organised the
Basic Dispenser | ! DVM design into three subsystems: a Cashier, a

Manager | ©TY codel, Drink Maker and a Maintenance. The first two
errCode2, errCode3 will deal with the function (1) and the last one

Fig. 4. Useful composites for the Drink will support the function (2). Fig. |3 (a) shows a
Vending Machine systems and their Version of the VDM in terms of the three sub-
behaviour systems. The Cashier Subsystem comprises the

Coffee Card Cashier composite and the Payment
Manager Component (PMgr) —which manages the drinks menu. The Drink Maker Sub-
system comprises the Basic Dispenser composite and the Recipe Manager Component
(RMgr) —which manages the drinks recipes. The Maintenance Subsystem comprises the
Basic Dispenser composite only. If the function (1) is required, then the Selector SL
will call the Pipe P3 and it in turn will call the Cashier Subsystem to deal with the drink
payment. In this subsystem, the Pipe P1 will first retrieve the drink’s price by executing
a service in PMgr. Then, it will pass up the price when calling the required service in

5 Composites providing more sophisticated services can be seen in [13l13]).

10 P. Velasco Elizondo and M.K.C. Ndjatchi

the Coffee Card Cashier composite. Next, the Pipe P3 will pass up the result to the
Drink Maker Subsystem. In this subsystem, the Guard G1 will allow any computation
down on the hierarchy only if the drink payment has been processed. In such a case,
this operator will call the Pipe P2. P2 will first retrieve the drink’s recipe by executing
a service in RMgr and then call the Basic Dispenser composite to perform the dispense
of ingredients accordingly. On the other hand if the function (2) is required, then the
Selector SL will call the corresponding Basic Dispenser’s service.

:: 1 :

Basic Dispenser|

Coffee Card

Basic Dispenser (
Cashier

Maintenance

Extended Dispenser

Coffee Card|
[Pmgr]| Cogtes cer

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| @ Do i
ol o oo], | e e

Cashier Subsystem Lo Maintenanc&ubsystem

Fig. 5. The outlines of three alternative designs of the Drink Vending Machine system

Fig.[8l(b) shows a new version of the Cashier Subsystem to allow the customer to pay
for drinks by using either coffee cards or cash. The first case is supported by the Coffee
Card Cashier composite, while the second one is supported by the Coin Box component
(CB). We use an Exclusive Choice Pipe@ operator ECP to retrieve the drink’s price
from PMgr and then, based on the payment method selected by the customer, direct the
execution of the charge to either the Coffee Card Cashier or CB. Finally, Fig.[3l(c) shows
how the Basic Dispenser composite can be further composed to create an Extended
Dispenser composite. This new composite includes the additional dispenser instances
D3 and D4 for dealing with more ingredients. For space reasons, in Fig.[5l(b) and (c) we
did not depict the complete DVM designs, but we want to highlight the fact that these
new subsystems can replace the ones in Fig.[3l(a) to create new versions of the DVM.

5.1 Composite Component Generation

For clarity purposes, in Fig. |6l we describe the functional specifications of atomic com-
ponents in some sort of D1 syntax. The keywords in and out denote the role of a
parameter in the operation. Next, we describe these specifications using the formalism
described in Section 4.1l

Functional Specification of the Coffee Card Cashier Composite. Attending the
bottom-up nature of our composition approach, we will start with the assembly in-
volving the Guard operator (G) and the Billing Component (BC). Let p = {cardId} be

® The Exclusive Choice Pipe is a composite composition operator that allows executing a com-
putation in a predecessor component and then, the generated output is passed up as input data
for the computation of only one component in a set of successor components.

7 Interface Definition Language.

Deriving Functional Interface Specifications for Composite Components 11

interface Dispenser{ interface CardReader{
emptyDispenser () ; getCardId(out int cardId) ;
setTemperature (in int temp, out errCode) ;
add (in int shots, out int errCode) ;
dispense (in int shots, out int errCode) ;

}

interface BillingComponent{
credit (in int cardId, in int amt, out errCode) ;
debit (in int cardId, in int amt, out errCode) ;
getBalance (in int cardId, out int amt) ;

}

Fig. 6. Functional specifications of atomic components

(a) (b)

interface BasicDispenser{ interface CoffeeCardCashier{
opl(); opl(in int amt, out errCode) ;
op2(in int temp, out errCode) ; op2(in int amt, out errCode) ;
op3

(
(in int shots, out int errCode) ; op3 (out int amt) ;
op4 (in int shots, out int errCode) ;
op63 (in int shots, in int shots, in int temp,
out int errCode, out int errCode, out int errCode) ;
op64 (in int shots, in int shots, in int temp,
out int errCode, out int errCode, out int errCode) ;
op62 (in int shots, in int shots, in int temp,
) out int errCode, out int errCode, out int errCode) ;

Fig. 7. The interface specifications of (a) the Basic Dispenser and (b) the Coffee Card Cashier

the input parameter to be evaluated by G’s Boolean expression, i.e. “in int cardld”. Let
fi={{cardld, amt},{errCode}), ({ cardId, amt}, {errCode}), ({ cardld},{amt})}
be the functional specification of BC. By using the guard composite fspec function we
can derive the functional specification

fo={{cardld, amt},{errCode}), ({cardId, amt}, {errCode}), ({ cardld},{amt})}
The f»’s tuples denote the signatures of the “guarded” versions of the debit, credit and
getBalance operations in the BC composite. As p’s and fi’s cardld are semantically
equivalent, the Guard’s add in helper function kept it in only one occurrence. However,
within the assembly the parameter is utilised as the variable to be evaluated in G’s
Boolean expression (e.g. if cardld | = null) and as the input parameter of the operation
signatures.

Once f» has been obtained, it can be used together with the functional specification of
the Card Reader component (CR) to generate the functional specification of the Coffee
Card Cashier composite via the pipe composite fspec function. Thus, let |
h = {2, {cardld})}
and f> be the CR and the guarded BC specifications respectively, we can derive

fs = {{{amt}, {errCode}), ({amt}, {errCode}), (&, {amt})}

which represents the Coffee Card Cashier’s functional specification. Using the IDL syn-
tax introduced before, this functional specification can be rewritten as shown in Fig. [7]
(b). In here, opl-op3 are signatures abstracting the three valid sequences of operations
to invoke within the composite’s constituents, i.e. getCardld-credit, getCardld-debit

8 We use the @ symbol to denote both no input parameters and no output parameters.

12 P. Velasco Elizondo and M.K.C. Ndjatchi

and getCardld-getBalance. Note that, both the input and the output parameters of
these operation sequences are entirely derived from the semantics of the Pipe operator.
The helper function sig bound is utilised to remove the input parameter cardld in the
resulting signatures, as it is produced internally within the composite, see Fig. 4 (a).

Functional Specification of the Basic Dispenser Composite. Let f;, i=1,2,3, be the
functional specifications of the three Dispenser’s instances:

fi ={(2,2), {temp}, {errCode}), ({shots}, {errCode}), ({shots}, {errCode})}

Applying the seq composite fspec function, we can derive the one of the Basic Dis-
penser composite component:

f4 = {(@, ®>7
({temp}, {errCode}),
({shots}, {errCode}),
({shots}, {errCode}),

({shots, shots, temp}, { errCode, errCode, errCode}),
({shots, shots, shots}, {errCode, errCode, errCode}),
({shots, shots, shots}, {errCode, errCode, errCode})}

The f4’s signatures abstract the valid sequences of operation executions within the com-
posite’s constituents. The IDL version of f; is shown in Fig.[7] (a). The op1 and op64
abstract the execution sequences emptyDispenser-emptyDispenser-emptyDispenser
and dispense-dispense-dispense respectively. The input and output parameters of these
signatures are entirely derived from the semantics of the Sequencer operator. Each one
of the signatures in the resulting specification is made of a concatenation of the pa-
rameters of the composed components’ signatures via the sig concat helper function.
The duplicated elements in the resulting InParam and OutParam sets are because of
composing several instances of the same component types. This allows, for example,
invoking the sequence dispense-dispense-dispense with a different number of shots in
each one of the dispensers, see Fig. H] (b).

5.2 Automation and Tool Support

We have generated a new version of our existing composition tool that includes a set
of algorithms that implement the defined functions. The tool operates on atomic com-
ponents that are offered as binary files. The binaries correspond to a Java implementa-
tion and relate to a functional interface specification written as Java annotations. During
component composition, the annotations (together with other component classes’ meta-
data) are read via reflection techniques, to determine the content of components’ func-
tional specifications and derive the ones for the composites. Composites’ specifications
are attached to their implementations as Java annotations.

Fig. 8| shows a screenshot of the tool during the generation of the Basic Dispenser
composite (described in Section[5.])). As can be seen, the names of the resulting signa-

? The tool enables component composition by dragging, dropping and composing pre-existing
components and pre-existing operators into a visual assembler. The generation of Java code
for the defined assemblies is also supported, see [[13].

Deriving Functional Interface Specifications for Composite Components 13

tures are generated by concatenating the names of the composed ones, e.g. dispensedis-
pensedispense. For naming the input and output parameters, the tool uses the ones in the
participating signatures. Although having duplicated elements in either the InParam or
the OutParam sets is semantically valid in our approach, it is syntactically invalid at
implementation-time, i.e. method signatures in Java cannot have duplicated parameter
names. Thus, when this happens a suffix to the original ones is added to differentiate
them, e.g. shots1, shots2 and shots3.

] The Exo Assembier Oporations editar Ll
Asb e Dperatons
e v »m WAL ENOTET IR BT 7, TS 3
e Vi == intint.void addaddemptyDispenseriint shots1.int shots?) 1
onagct mtintint shats1,int shots2,int shots3)

ntintint addadddispenselint shols 1t shots2int shotsdy

intintint adadispensesetTamperature{int shots1,int shots 2t temp3)
i int void P shots1.int shots?)
InLinLint adddispenseaddint shots1mt shotszint shotsdy

imtinLint adadispensedispensedint shots1.in shots2int shots}
Intini,void

shots1nt tlemp2)
mLinLint dispenseselTemperalureadd(ini shots1,int temp.jint shols3)

intiny, s ANt IEmp2,int shotsd)
intvoid et shotst.int templ)
il void,void shots)
it ok et shols?]
InLvoidal dispenseamptyDispanserdispansa(ing shotst.int saotsd)
inLinLint dispenseaddseiTemperature(ing shots1,int shots 2l tempd)
InTintvold GispanseaddemptyDeponsarfiat shotsl it shotsd)

Sevlinin IntinLint dispanseaddadad(int shots1.int shods2.int shatsdy

mLinLint dispenseadddispensedint shols1,int shots2,int shotsd)

Intintint disponsedispansosatTomparaturafint shote1,int shatedint temp3)

inLinLvoid dispensadispenseemptyDispenseriint shots1,int snots2)

mLinLint dispensedispensesdoing shals1,inl shots2in shots3)

[0
Operation data:

Name: spensedispenssdispente

Input paramotors:

Faramote Descrption |
recuires_IF_int_shots 1 o ciapenas 1

recuires & _int_shots2 o dapenss
Tequires_W_ini_shots o dispanse

Output parameters (Conmectiorn Resull):

Parametst | Description |
Code1 IorC0a8 retum valup i

sn0ae return vaius

picades_CR_int_snCoded
sieagss CRL it iiCosed
Reduce Input Paramelers Save Exnt

Fig. 8. A visual tool to support the generation of composite components.

Our tool largely automates the functional interface derivation. However, in some
cases composite developer intervention could be needed to refine the content and syn-
tax of the resulting specifications. For example, to eliminate signatures representing
execution sequences that are invalid or undesirable, the composite developer has to
provide the filtering criteria. Taking into consideration the domain context for which
the Basic Dispenser composite is built, only 4 out of the 64 operations make sense.
These operations are the ones abstracting the sequential execution of the same oper-
ation in each one of the dispenser components, e.g. dispense-dispense-dispense. Simi-
larly, to allow a better understanding to composite users, the composite developer might
want to rename the resulting operations or parameters. The tool provides the means to
allow this and some other refinements, e.g. see the lower part of Fig. [§ which allows the
composite developer to rename operations and parameters.

14 P. Velasco Elizondo and M.K.C. Ndjatchi

6 Discussion and Related Work

Management of both functional and non-functional properties is one of the main chal-
lenges in CBD community. Despite the former, the starting point in their management,
that is their specification, is not addressed completely in most CBD approaches [11].
With few exceptions, current practice in CBD focuses on components and leaves their
interactions specified as lines representing method calls. As illustrated in Section 2]
such lines are not enough for defining a method for systematically, consistently and
automatically deriving the specifications of component assemblies. We have presented
our progress on developing an alternative approach to tackle this issue. Even though
we only focus on deriving functional properties, our approach presents differences with
respect to related work. Specifically, our approach (i) provides a new vision for deriving
the functional properties, which enables increasing the number of services offered by
a composite, (ii) has simple but formal algebraic basis, which makes interface deriva-
tion more precise, consistent and systematic and (iii) can be largely automated, which
mitigates interface derivation effort. Next we justify these claims.

During all these years several component models have been proposed. However, not
all of them support the construction of composite components. About half of the mod-
els surveyed in [2)8] support them: AUTOSAR, BIP, BlueArX, Fractal, Koala, KobrA,
MS COM, Open COM, PECOS, ProCom, SaveCCM, SOFAZ.OE In all these models,
functional interfaces of composite components are derived by delegating “some” of the
functionality from their subcomponents in an ad hoc manner rather than by consistently
deriving them based on the semantics of the composition. Although this approach has
demonstrated to be good enough for composite developers, its ad hoc nature make it
require much intervention from the composite developer.

From the models listed above, only BIP, Fractal, ProCom and SOFA2.0 support ex-
plicit composition mechanisms. However, the nature of these composition mechanisms
is not algebraic in the sense that when applied to units of composition of a given type,
the resulting piece is not a unit of the same type that can be stored and further com-
posed. We have demonstrated that having algebraic composition mechanisms facilitates
the development of more precise, consistent, systematic and automated approaches to
derivate composites and their functional interfaces. As a corollary of the algebraic basis
of our approach, the proposed functions can be composed. That is, the ones defined for
basic operators can be reused in the definitions for the composite ones. For example, the
Observer is a composite composition operator made up of one Pipe and one Sequencer
operators. As can be seen, its corresponding function

obs composite fspec : FSpec x ... x FSpec — FSpec

obs composite fspec = fi, fa, ..., fn : FSpec ®
pipe composite fspec(fi, seq composite fspec(fa, ..., fn))

uses both the pipe composite fspec and the seq composite fspec functions accord-
ingly. Thus, we could say that we support some sort of interface composition. This ob-
servation leads us to the point of recognising that our work shares some principles and

10 Note that not all the generated composites in these models are meant to be reusable —e.g. in
BIP, Fractal and PECOS there is not a notion of repository where the generated composites
can be stored to and retrieved from.

Deriving Functional Interface Specifications for Composite Components 15

goals with algebraic composition mechanisms such as parameterised modules (a.k.a.
functors) and traits [3|].

In some functional languages (e.g. ML [12]]), a module is characterised by a signature
(i.e. an interface specification) and a structure (i.e. an implementation of the signature).
A parameterised module denotes a function from structures to structures; that is, it ac-
cepts one or more structures of a given signature, and produces a new structure that
implements a particular signature. In contrast to our approach, the signature of the new
structure is chosen by the programmer in an ad hoc manner rather than derived from
the parameterised module’s arguments. On the other hand, traits are essentially groups
of provided and required methods that serve as building blocks for classes by provid-
ing first-class representations of the behaviours of a class. Traits can be algebraically
composed via the sum operator which, generally speaking, has the semantics of some
sort of structural union. Thus the number of the behaviours (i.e. methods) in the com-
posite trait is the “sum” of the behaviours in all the composed traits. In our approach,
the number of the behaviours is derived differently as each behaviour abstracts a par-
ticular form of coordination between the behaviours of multiple components. Thus our
approach supports a new notion for deriving the structure and behaviors of a composite.

Our proposal has some drawbacks though. In the example presented in Section [3]
we observed that depending on the number of operations provided by the composed
components, the application of some functions could explode potentially the number of
operations in the resulting interfaces. Although by using our tool a composite developer
can filter the number of signatures of the resulting specification by keeping some exe-
cution sequences away, it could be desirable to automatically support this filtering by
using some sort of behavioural information, e.g. assertions or behaviour protocols.

Additionally, we are dealing with stateless components and we are not considering
specifications containing assertions on operations. We are exploring the feasibility of
using some formalism in algebraic specification languages to deal with state and asser-
tion composition under the semantics of our composition operators. For example, in the
Z specification language [9]] schemas specify the state of a module as well as relevant
operations on them. Z schemas have a name, a declaration part and a predicate part. The
name part gives a name to the aspect of the the module being specified. The declaration
part defines a number of variables of certain types. The predicate part defines invari-
ants on these variables. The schema calculus of Z allows extending the schemas and
combining them by using logical connectives such as conjunction, disjunction and im-
plication. Conjunction and implication between schemas are defined by combining the
declaration parts and taking in conjunction or implication the predicate parts. Schemas
can be composed sequentially, which implies that the after-state of the first schema is
to be matched with the before-state of the second.

7 Conclusions and Future Work

When the construction of reusable composite components is supported, the ability to
derive their interface specifications is crucial to scale the development techniques of
any CBD approach. We presented our progress on developing an approach to support

16 P. Velasco Elizondo and M.K.C. Ndjatchi

this issue. Specifically, we focused on the generation of composites’ functional speci-
fications. The composites are constructed via composition operators defined within the
context of a new component model. The specification approach is based on a set of
operator-specific functions, which allow deriving composites’ functional specifications
in a systematic, consistent and largely automatic manner. Via an example we have illus-
trated the aforementioned benefits as well as the fact that our approach provides a new
view into the space of interface generation.

In the near future, we plan to extend our approach to deal with more sophisticated
behavioural information. Similarly, we have started to work on a similar approach to
derive other elements from the composites’ interfaces, i.e. the non-functional proper-
ties and the information about the deployment environment. So far it seems feasible to
derive directly composable non-functional properties as described in [2].

By doing this research we hope to gain more understanding on software composition
and its automation, which is the ultimate goal not only for CBD, but also for some other
component-based development paradigms such as service composition and software
product lines.

References

1. Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F., Pomberger, G., Pree, W., Stal,
M., Szyperski, C.: What characterizes a (software) component? Software - Concepts and
Tools 19(1), 49-56 (1998)

2. Crnkovié, L., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification framework for
software component models. IEEE Trans. on Software Engineering (2010) (pre-Prints)

3. Ducasse, S., Nierstrasz, O., Schirli, N., Wuyts, R., Black, A.P.: Traits: A mechanism for
fine-grained reuse. ACM Trans. on Prog. Languages and Systems 28, 331-388 (2006)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley, Reading (1995)

5. Geisterfer, C.J.M., Ghosh, S.: Software component specification: A study in perspective of
component selection and reuse. In: Proc. of the 5th Int. Conf. on Commercial-off-the-Shelf
(COTS)-Based Software Systems. IEEE Computer Society, Los Alamitos (2006)

6. Lau, K.-K., Ling, L., Velasco Elizondo, P.: Towards composing software components in both
design and deployment phases. In: Schmidt, H.-W., Crnkovi¢, 1., Heineman, G.T., Stafford,
J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 274-282. Springer, Heidelberg (2007)

7. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its preliminary formal-
isation. In: de Boer, E.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 1-21. Springer, Heidelberg (2006)

8. Lau, K.-K., Wang, Z.: A survey of software component models. Preprint CSPP-38, School
of Computer Science, The University of Manchester (May 2006)

9. Potter, B., Till, D., Sinclair, J.: An Introduction to Formal Specification and Z, 2nd edn.
Prentice Hall PTR, Upper Saddle River (1996)

10. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow control-flow
patterns: A revised view. Technical Report BPM-06-22, BPM Center (2006)

11. Sentilles, S., gtépén, P, Carlson, J., Crnkovié, I.: Integration of extra-functional properties in
component models. In: Lewis, G.A., Poernomo, I., Hofmeister, C. (eds.) CBSE 2009. LNCS,
vol. 5582, pp. 173-190. Springer, Heidelberg (2009)

12.
13.

14.

15.

Deriving Functional Interface Specifications for Composite Components 17

Ullman, J.D.: Elements of ML programming. Prentice-Hall, Inc., Upper Saddle River (1998)
Velasco Elizondo, P.: Systematic and automated development with reuse (2009),
http://www.cimat.mx/~pvelasco/exo/exotool_en.html

Velasco Elizondo, P., Lau, K.-K.: A catalogue of component connectors to support develop-
ment with reuse. Journal of Systems and Software 83(7), 1165-1178 (2010)

Velasco Elizondo, P., Ndjatchi, M.K.C.: Functional Specification of Composite Components.
Technical Report I-10-05/24-06-2010(CC/CIMAT), Centre for Mathematical Research (June
2010), http://www.cimat.mx/reportes/enlinea/I-10-05.pdf

http://www.cimat.mx/~pvelasco/exo/exotool_en.html
http://www.cimat.mx/reportes/enlinea/I-10-05.pdf

	Deriving Functional Interface Specifications for Composite Components
	Introduction
	Composite Components in CBD Approaches
	The Foundations of This Work
	The Proposed Approach
	Basic Formalism and Assumptions
	The Helper Functions
	The Operator-Specific Functions

	Example
	Composite Component Generation
	Automation and Tool Support

	Discussion and Related Work
	Conclusions and Future Work

